The Relation ``Commutator Equals Function'' in Banach Algebras
Matematičeskie zametki, Tome 109 (2021) no. 3, pp. 323-337.

Voir la notice de l'article provenant de la source Math-Net.Ru

The relation $xy-yx=h(y)$, where $h$ is a holomorphic function, occurs naturally in the definitions of some quantum groups. To attach a rigorous meaning to the right-hand side of this equality, we assume that $x$ and $y$ are elements of a Banach algebra (or of an Arens–Michael algebra). We prove that the universal algebra generated by a commutation relation of this kind can be represented explicitly as an analytic Ore extension. An analysis of the structure of the algebra shows that the set of holomorphic functions of $y$ degenerates, but at each zero of $h$, some local algebra of power series remains. Moreover, this local algebra depends only on the order of the zero. As an application, we prove a result about closed subalgebras of holomorphically finitely generated algebras.
Mots-clés : commutation relation
Keywords: quantum group, Banach algebra, Arens–Michael algebra, analytic Ore extension, holomorphically finitely generated algebra.
@article{MZM_2021_109_3_a0,
     author = {O. Yu. Aristov},
     title = {The {Relation} {``Commutator} {Equals} {Function''} in {Banach} {Algebras}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {323--337},
     publisher = {mathdoc},
     volume = {109},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_3_a0/}
}
TY  - JOUR
AU  - O. Yu. Aristov
TI  - The Relation ``Commutator Equals Function'' in Banach Algebras
JO  - Matematičeskie zametki
PY  - 2021
SP  - 323
EP  - 337
VL  - 109
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_3_a0/
LA  - ru
ID  - MZM_2021_109_3_a0
ER  - 
%0 Journal Article
%A O. Yu. Aristov
%T The Relation ``Commutator Equals Function'' in Banach Algebras
%J Matematičeskie zametki
%D 2021
%P 323-337
%V 109
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_3_a0/
%G ru
%F MZM_2021_109_3_a0
O. Yu. Aristov. The Relation ``Commutator Equals Function'' in Banach Algebras. Matematičeskie zametki, Tome 109 (2021) no. 3, pp. 323-337. http://geodesic.mathdoc.fr/item/MZM_2021_109_3_a0/

[1] K. Kassel, Kvantovye gruppy, Fazis, M., 1999 | MR

[2] N. Aizawa, H. Sato, “Quantum affine transformation group and covariant differential calculus”, Progr. Theoret. Phys., 91:6 (1994), 1065–1079 | DOI | MR

[3] V. L. Ostrovskii, Yu. S. Samoilenko, “O parakh operatorov, svyazannykh kvadratichnym sootnosheniem”, Funkts. analiz i ego pril., 47:1 (2013), 82–87 | DOI | MR | Zbl

[4] Yu. V. Turovskii, “O parakh operatorov, svyazannykh kvadratichnym sootnosheniem”, Spektralnaya teoriya operatorov i ee prilozheniya, 6, Elm, Baku, 1985, 144–181 | MR

[5] V. S. Shulman, “Invariant subspaces and spectral mapping theorems”, Functional Analysis and Operator Theory, Banach Center Publ., 30, Polish Acad. Sci. Inst. Math., Warszawa, 1994, 313–325 | MR

[6] A. Yu. Pirkovskii, “Obolochki Arensa–Maikla, gomologicheskie epimorfizmy i otnositelno kvazisvobodnye algebry”, Tr. MMO, 69, no. 1, 2008, 34–125 | MR

[7] N. Lao, R. Whitley, “Norms of powers of the Volterra operator”, Integr. Equ. Oper. Theory, 27:4 (1997), 419–425 | DOI | MR

[8] D. Kershaw, “Operator Norms of Powers of the Volterra Operator”, J. Integral Equations Appl., 11:3 (1999), 351–36 | DOI | MR

[9] B. Thorpe, “The norm of powers of the indefinite integral operator on $(0,1)$”, Bull. London. Math. Soc., 30:5 (1998), 543–548 | DOI | MR

[10] G. Little, J. B. Reade, “Estimates for the norm of the $n$th indefinite integral”, Bull. London. Math. Soc., 30:5 (1998), 539–542 | DOI | MR

[11] A. Yu. Pirkovskii, “Noncommutative analogues of Stein spaces of finite embedding dimension”, Algebraic Methods in Functional Analysis, Oper. Theory Adv. Appl., 233, Birkhäuser Verlag, Bassel, 2014, 135–153 | DOI | MR

[12] A. Yu. Pirkovskii, “Holomorphically finitely generated algebras”, J. Noncommut. Geom., 9:1 (2015), 215–264 | DOI | MR

[13] A. Mallios, Topological Algebras. Selected Topics, North-Holland Math. Stud., 124, North-Holland, Amsterdam, 1986 | MR

[14] W. Rudin, Real and Complex Analysis, McGraw-Hill Book, New York, 1987 | MR

[15] A. Ya. Khelemskii, Banakhovy i polinormirovannye algebry: obschaya teoriya, predstavleniya, gomologii, Nauka, M., 1989 | MR | Zbl

[16] J. L. Taylor, “A general framework for a multi-operator functional calculus”, Adv. Math., 9 (1972), 183–252 | DOI | MR

[17] J. L. Taylor, “Functions of several noncommuting variables”, Bull. Amer. Math. Soc., 79 (1973), 1–34 | DOI | MR

[18] A. Grotendik, “O prostranstvakh $(\mathscr F)$ i $(\mathscr{DF})$”, Matematika, 2:3 (1958), 81–128 | MR | Zbl

[19] P. Pérez Carreras, J. Bonet, Barrelled Locally Convex Spaces, North-Holland Math. Stud., 131, North-Holland, Amsterdam, 1987 | MR

[20] Kh. Shefer, Topologicheskie vektornye prostranstva, Mir, M., 1971 | MR | Zbl

[21] R. Meise, D. Vogt, Introduction to Functional Analysis, Oxf. Grad. Texts Math., 2, The Clarendon Press, New York, 1997 | MR

[22] J. Eschmeier, M. Putinar, Spectral Decompositions and Analytic Sheaves, London Math. Soc. Monogr. (N.S.), 10, The Clarendon Press, New York, 1996 | MR

[23] A. Yu. Pirkovskii, “Biprojective topological algebras of homological bidimension $1$”, J. Math. Sci. (New York), 111:2 (2002), 3476–3495 | DOI | MR

[24] A. Pietsch, “Zur Theorie der topologischen Tensorprodukte”, Math. Nachr., 25 (1963), 19–30 | DOI | MR

[25] O. Yu. Aristov, Arens–Michael Envelopes of Nilpotent Lie Algebras, Functions of Exponential Type, and Homological Epimorphisms, 2018, arXiv: 1810.13213