Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2021_109_2_a7, author = {A. A. Makhnev}, title = {Automorphisms of a {Distance} {Regular} {Graph} with {Intersection} {Array} $\{21,18,12,4;1,1,6,21\}$}, journal = {Matemati\v{c}eskie zametki}, pages = {247--256}, publisher = {mathdoc}, volume = {109}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_2_a7/} }
TY - JOUR AU - A. A. Makhnev TI - Automorphisms of a Distance Regular Graph with Intersection Array $\{21,18,12,4;1,1,6,21\}$ JO - Matematičeskie zametki PY - 2021 SP - 247 EP - 256 VL - 109 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2021_109_2_a7/ LA - ru ID - MZM_2021_109_2_a7 ER -
A. A. Makhnev. Automorphisms of a Distance Regular Graph with Intersection Array $\{21,18,12,4;1,1,6,21\}$. Matematičeskie zametki, Tome 109 (2021) no. 2, pp. 247-256. http://geodesic.mathdoc.fr/item/MZM_2021_109_2_a7/
[1] A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance-Regular Graphs, Ergeb. Math. Grenzgeb. (3), 18, Springer-Verlag, Berlin, 1989 | MR
[2] A. A. Makhnev, M. S. Nirova, “On distance-regular graphs with $\lambda=2$”, Zhurn. SFU. Ser. Matem. i fiz., 7:2 (2014), 204–210
[3] P. J. Cameron, Permutation Groups, London Math. Soc. Stud. Texts, 45, Cambridge University Press, Cambridge, 1999 | MR
[4] A. V. Zavarnitsine, “Finite simple groups with narrow prime spectrum”, Sib. elektron. matem. izv., 6 (2009), 1–12 | MR