Automorphisms of a Distance Regular Graph with Intersection Array $\{21,18,12,4;1,1,6,21\}$
Matematičeskie zametki, Tome 109 (2021) no. 2, pp. 247-256
Cet article a éte moissonné depuis la source Math-Net.Ru
A. A. Makhnev and M. S. Nirova found the intersection arrays of distance regular graphs with $\lambda=2$ and at most 4096 vertices. For graphs of diameter $4$, of most interest is the array $\{21,18,12,4;1,1,6,21\}$ in this list. In this paper, we find the possible orders and fixed point subgraphs of the automorphisms of a distance regular graph with intersection array $\{21,18,12,4;1,1,6,21\}$.
Keywords:
distance regular graph, graph of diameter $4$ with $a_4=0$
Mots-clés : graph automorphism.
Mots-clés : graph automorphism.
@article{MZM_2021_109_2_a7,
author = {A. A. Makhnev},
title = {Automorphisms of a {Distance} {Regular} {Graph} with {Intersection} {Array} $\{21,18,12,4;1,1,6,21\}$},
journal = {Matemati\v{c}eskie zametki},
pages = {247--256},
year = {2021},
volume = {109},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_2_a7/}
}
A. A. Makhnev. Automorphisms of a Distance Regular Graph with Intersection Array $\{21,18,12,4;1,1,6,21\}$. Matematičeskie zametki, Tome 109 (2021) no. 2, pp. 247-256. http://geodesic.mathdoc.fr/item/MZM_2021_109_2_a7/
[1] A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance-Regular Graphs, Ergeb. Math. Grenzgeb. (3), 18, Springer-Verlag, Berlin, 1989 | MR
[2] A. A. Makhnev, M. S. Nirova, “On distance-regular graphs with $\lambda=2$”, Zhurn. SFU. Ser. Matem. i fiz., 7:2 (2014), 204–210
[3] P. J. Cameron, Permutation Groups, London Math. Soc. Stud. Texts, 45, Cambridge University Press, Cambridge, 1999 | MR
[4] A. V. Zavarnitsine, “Finite simple groups with narrow prime spectrum”, Sib. elektron. matem. izv., 6 (2009), 1–12 | MR