Automorphisms of a Distance Regular Graph with Intersection Array $\{21,18,12,4;1,1,6,21\}$
Matematičeskie zametki, Tome 109 (2021) no. 2, pp. 247-256.

Voir la notice de l'article provenant de la source Math-Net.Ru

A. A. Makhnev and M. S. Nirova found the intersection arrays of distance regular graphs with $\lambda=2$ and at most 4096 vertices. For graphs of diameter $4$, of most interest is the array $\{21,18,12,4;1,1,6,21\}$ in this list. In this paper, we find the possible orders and fixed point subgraphs of the automorphisms of a distance regular graph with intersection array $\{21,18,12,4;1,1,6,21\}$.
Keywords: distance regular graph, graph of diameter $4$ with $a_4=0$
Mots-clés : graph automorphism.
@article{MZM_2021_109_2_a7,
     author = {A. A. Makhnev},
     title = {Automorphisms of a {Distance} {Regular} {Graph} with {Intersection} {Array} $\{21,18,12,4;1,1,6,21\}$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {247--256},
     publisher = {mathdoc},
     volume = {109},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_2_a7/}
}
TY  - JOUR
AU  - A. A. Makhnev
TI  - Automorphisms of a Distance Regular Graph with Intersection Array $\{21,18,12,4;1,1,6,21\}$
JO  - Matematičeskie zametki
PY  - 2021
SP  - 247
EP  - 256
VL  - 109
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_2_a7/
LA  - ru
ID  - MZM_2021_109_2_a7
ER  - 
%0 Journal Article
%A A. A. Makhnev
%T Automorphisms of a Distance Regular Graph with Intersection Array $\{21,18,12,4;1,1,6,21\}$
%J Matematičeskie zametki
%D 2021
%P 247-256
%V 109
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_2_a7/
%G ru
%F MZM_2021_109_2_a7
A. A. Makhnev. Automorphisms of a Distance Regular Graph with Intersection Array $\{21,18,12,4;1,1,6,21\}$. Matematičeskie zametki, Tome 109 (2021) no. 2, pp. 247-256. http://geodesic.mathdoc.fr/item/MZM_2021_109_2_a7/

[1] A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance-Regular Graphs, Ergeb. Math. Grenzgeb. (3), 18, Springer-Verlag, Berlin, 1989 | MR

[2] A. A. Makhnev, M. S. Nirova, “On distance-regular graphs with $\lambda=2$”, Zhurn. SFU. Ser. Matem. i fiz., 7:2 (2014), 204–210

[3] P. J. Cameron, Permutation Groups, London Math. Soc. Stud. Texts, 45, Cambridge University Press, Cambridge, 1999 | MR

[4] A. V. Zavarnitsine, “Finite simple groups with narrow prime spectrum”, Sib. elektron. matem. izv., 6 (2009), 1–12 | MR