Uniqueness Theorems for Multiple Franklin Series Converging over Rectangles
Matematičeskie zametki, Tome 109 (2021) no. 2, pp. 206-218

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that if a multiple series in the Franklin system converges in the sense of Pringsheim everywhere, except, perhaps, on a set that is a Cartesian product of sets of measure zero, to an everywhere finite integrable function, then it is the Fourier–Franklin series of this function. A uniqueness theorem is also proved for multiple Franklin series whose rectangular partial sums at each point have a sequential limit.
Keywords: Franklin system, multiple series, uniqueness theorem.
@article{MZM_2021_109_2_a4,
     author = {G. G. Gevorkyan and L. A. Akopyan},
     title = {Uniqueness {Theorems} for {Multiple} {Franklin} {Series} {Converging} over {Rectangles}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {206--218},
     publisher = {mathdoc},
     volume = {109},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_2_a4/}
}
TY  - JOUR
AU  - G. G. Gevorkyan
AU  - L. A. Akopyan
TI  - Uniqueness Theorems for Multiple Franklin Series Converging over Rectangles
JO  - Matematičeskie zametki
PY  - 2021
SP  - 206
EP  - 218
VL  - 109
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_2_a4/
LA  - ru
ID  - MZM_2021_109_2_a4
ER  - 
%0 Journal Article
%A G. G. Gevorkyan
%A L. A. Akopyan
%T Uniqueness Theorems for Multiple Franklin Series Converging over Rectangles
%J Matematičeskie zametki
%D 2021
%P 206-218
%V 109
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_2_a4/
%G ru
%F MZM_2021_109_2_a4
G. G. Gevorkyan; L. A. Akopyan. Uniqueness Theorems for Multiple Franklin Series Converging over Rectangles. Matematičeskie zametki, Tome 109 (2021) no. 2, pp. 206-218. http://geodesic.mathdoc.fr/item/MZM_2021_109_2_a4/