Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2021_109_2_a4, author = {G. G. Gevorkyan and L. A. Akopyan}, title = {Uniqueness {Theorems} for {Multiple} {Franklin} {Series} {Converging} over {Rectangles}}, journal = {Matemati\v{c}eskie zametki}, pages = {206--218}, publisher = {mathdoc}, volume = {109}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_2_a4/} }
TY - JOUR AU - G. G. Gevorkyan AU - L. A. Akopyan TI - Uniqueness Theorems for Multiple Franklin Series Converging over Rectangles JO - Matematičeskie zametki PY - 2021 SP - 206 EP - 218 VL - 109 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2021_109_2_a4/ LA - ru ID - MZM_2021_109_2_a4 ER -
G. G. Gevorkyan; L. A. Akopyan. Uniqueness Theorems for Multiple Franklin Series Converging over Rectangles. Matematičeskie zametki, Tome 109 (2021) no. 2, pp. 206-218. http://geodesic.mathdoc.fr/item/MZM_2021_109_2_a4/
[1] H. K. Bari, Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR
[2] G. Cantor, “Ueber die Ausdehnung eines Satzes aus der Theorie der trigonometrschen Reihen”, Math. Ann., 5 (1872), 123–132 | DOI | MR
[3] L. D. Gogoladze, “K voprosu vosstanovleniya koeffitsientov skhodyaschikhsya kratnykh funktsionalnykh ryadov”, Izv. RAN. Ser. matem., 72:2 (2008), 83–90 | DOI | MR | Zbl
[4] Ch. J. de la Vallée-Poussin, “Sur l'unicité du développement trigonométrique”, Belg. Bull. Sc., 1912, 702–718 | Zbl
[5] G. Kozma, A. Olevskii, Cantor Uniqueness and Multiplicity Along Subsequences, 2018, arXiv: 1804.06902v1
[6] F. G. Arutyunyan, “O ryadakh po sisteme Khaara”, Dokl. AN Arm. SSR, 38:3 (1964), 129–134 | MR
[7] M. B. Petrovskaya, “O nul-ryadakh po sisteme Khaara i mnozhestvakh edinstvennosti”, Izv. AN SSSR. Ser. matem., 28:4 (1964), 773–798 | MR | Zbl
[8] V. A. Skvortsov, “Teorema tipa Kantora dlya sistemy Khaara”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1964, no. 5, 3–6 | MR
[9] F. G. Arutyunyan, A. A. Talalyan, “O edinstvennosti ryadov po sistemam Khaara i Uolsha”, Izv. AN SSSR. Ser. matem., 28:6 (1964), 1391–1408 | MR | Zbl
[10] M. G. Plotnikov, “$\lambda$-Skhodimost kratnykh ryadov Uolsha–Peli i mnozhestva edinstvennosti”, Matem. zametki, 102:2 (2017), 292–301 | DOI | MR
[11] M. G. Plotnikov, Yu. A. Plotnikova, “Razlozhenie dvoichnykh mer i ob'edinenie zamknutykh $\mathscr{U}$-mnozhestv dlya ryadov po sisteme Khaara”, Matem. sb., 207:3 (2016), 137–152 | DOI | MR
[12] G. G. Gevorkyan, K. A. Navasardyan, “Teoremy edinstvennosti dlya obobschennoi sistemy Khaara”, Matem. zametki, 104:1 (2018), 11–24 | DOI
[13] G. G. Gevorkyan, K. A. Navasardyan, “Teoremy edinstvennosti dlya sistemy Vilenkina”, Izv. NAN Armenii. Ser. matem., 53:2 (2018), 15–30 | MR
[14] G. G. Gevorkyan, “Teoremy edinstvennosti dlya ryadov po sisteme Franklina”, Matem. zametki, 98:5 (2015), 786–789 | DOI | MR
[15] G. G. Gevorkyan, “O edinstvennosti ryadov po sisteme Franklina”, Matem. sb., 207:12 (2016), 30–53 | DOI | MR
[16] G. G. Gevorkyan, “Teoremy edinstvennosti ryadov Franklina, skhodyaschikhsya k integriruemym funktsiyam”, Matem. sb., 209:6 (2018), 25–46 | DOI
[17] Ph. Franklin, “A set of continuous orthogonal functions”, Math. Ann., 100 (1928), 522–529 | DOI | MR
[18] B. C. Kashin, A. A. Saakyan, Ortogonalnye ryady, Izd-vo AFTs, M., 1999 | MR | Zbl
[19] Z. Ciesielski, “Properties of the orthonormal Franklin system. II”, Studia Math., 27 (1966), 289–323 | DOI | MR
[20] G. G. Gevorkyan, “Teoremy edinstvennosti dlya ryadov Franklina”, Garmonicheskii analiz, teoriya priblizhenii i teoriya chisel, Tr. MIAN, 303, MAIK «Nauka/Interperiodika», M., 2018, 67–86 | DOI
[21] G. G. Gevorkyan, “Teoremy edinstvennosti dlya odnomernykh i dvoinykh ryadov Franklina”, Izv. RAN. Ser. matem., 84:5 (2020), 3–19 | DOI
[22] L. D. Gogoladze, “Ob ogranichennosti skhodyaschikhsya srednikh kratnykh funktsionalnykh ryadov”, Matem. zametki, 34:6 (1983), 845–855 | MR | Zbl
[23] Sh. T. Tetunashvili, “O nekotorykh kratnykh funktsionalnykh ryadakh i reshenie problemy edinstvennosti kratnykh trigonometricheskikh ryadov dlya skhodimosti po Pringskheimu”, Matem. sb., 182:8 (1991), 1158–1176 | MR | Zbl
[24] V. G. Chelidze, Nekotorye metody summirovaniya dvoinykh ryadov i dvoinykh integralov, Izd-vo Tbilisskogo un-ta, Tbilisi, 1977
[25] G. G. Gevorkyan, “O ryadakh po sisteme Franklina”, Anal. Math., 16:2 (1990), 87–114 | DOI | MR