Uniqueness Theorems for Multiple Franklin Series Converging over Rectangles
Matematičeskie zametki, Tome 109 (2021) no. 2, pp. 206-218.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that if a multiple series in the Franklin system converges in the sense of Pringsheim everywhere, except, perhaps, on a set that is a Cartesian product of sets of measure zero, to an everywhere finite integrable function, then it is the Fourier–Franklin series of this function. A uniqueness theorem is also proved for multiple Franklin series whose rectangular partial sums at each point have a sequential limit.
Keywords: Franklin system, multiple series, uniqueness theorem.
@article{MZM_2021_109_2_a4,
     author = {G. G. Gevorkyan and L. A. Akopyan},
     title = {Uniqueness {Theorems} for {Multiple} {Franklin} {Series} {Converging} over {Rectangles}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {206--218},
     publisher = {mathdoc},
     volume = {109},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_2_a4/}
}
TY  - JOUR
AU  - G. G. Gevorkyan
AU  - L. A. Akopyan
TI  - Uniqueness Theorems for Multiple Franklin Series Converging over Rectangles
JO  - Matematičeskie zametki
PY  - 2021
SP  - 206
EP  - 218
VL  - 109
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_2_a4/
LA  - ru
ID  - MZM_2021_109_2_a4
ER  - 
%0 Journal Article
%A G. G. Gevorkyan
%A L. A. Akopyan
%T Uniqueness Theorems for Multiple Franklin Series Converging over Rectangles
%J Matematičeskie zametki
%D 2021
%P 206-218
%V 109
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_2_a4/
%G ru
%F MZM_2021_109_2_a4
G. G. Gevorkyan; L. A. Akopyan. Uniqueness Theorems for Multiple Franklin Series Converging over Rectangles. Matematičeskie zametki, Tome 109 (2021) no. 2, pp. 206-218. http://geodesic.mathdoc.fr/item/MZM_2021_109_2_a4/

[1] H. K. Bari, Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR

[2] G. Cantor, “Ueber die Ausdehnung eines Satzes aus der Theorie der trigonometrschen Reihen”, Math. Ann., 5 (1872), 123–132 | DOI | MR

[3] L. D. Gogoladze, “K voprosu vosstanovleniya koeffitsientov skhodyaschikhsya kratnykh funktsionalnykh ryadov”, Izv. RAN. Ser. matem., 72:2 (2008), 83–90 | DOI | MR | Zbl

[4] Ch. J. de la Vallée-Poussin, “Sur l'unicité du développement trigonométrique”, Belg. Bull. Sc., 1912, 702–718 | Zbl

[5] G. Kozma, A. Olevskii, Cantor Uniqueness and Multiplicity Along Subsequences, 2018, arXiv: 1804.06902v1

[6] F. G. Arutyunyan, “O ryadakh po sisteme Khaara”, Dokl. AN Arm. SSR, 38:3 (1964), 129–134 | MR

[7] M. B. Petrovskaya, “O nul-ryadakh po sisteme Khaara i mnozhestvakh edinstvennosti”, Izv. AN SSSR. Ser. matem., 28:4 (1964), 773–798 | MR | Zbl

[8] V. A. Skvortsov, “Teorema tipa Kantora dlya sistemy Khaara”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1964, no. 5, 3–6 | MR

[9] F. G. Arutyunyan, A. A. Talalyan, “O edinstvennosti ryadov po sistemam Khaara i Uolsha”, Izv. AN SSSR. Ser. matem., 28:6 (1964), 1391–1408 | MR | Zbl

[10] M. G. Plotnikov, “$\lambda$-Skhodimost kratnykh ryadov Uolsha–Peli i mnozhestva edinstvennosti”, Matem. zametki, 102:2 (2017), 292–301 | DOI | MR

[11] M. G. Plotnikov, Yu. A. Plotnikova, “Razlozhenie dvoichnykh mer i ob'edinenie zamknutykh $\mathscr{U}$-mnozhestv dlya ryadov po sisteme Khaara”, Matem. sb., 207:3 (2016), 137–152 | DOI | MR

[12] G. G. Gevorkyan, K. A. Navasardyan, “Teoremy edinstvennosti dlya obobschennoi sistemy Khaara”, Matem. zametki, 104:1 (2018), 11–24 | DOI

[13] G. G. Gevorkyan, K. A. Navasardyan, “Teoremy edinstvennosti dlya sistemy Vilenkina”, Izv. NAN Armenii. Ser. matem., 53:2 (2018), 15–30 | MR

[14] G. G. Gevorkyan, “Teoremy edinstvennosti dlya ryadov po sisteme Franklina”, Matem. zametki, 98:5 (2015), 786–789 | DOI | MR

[15] G. G. Gevorkyan, “O edinstvennosti ryadov po sisteme Franklina”, Matem. sb., 207:12 (2016), 30–53 | DOI | MR

[16] G. G. Gevorkyan, “Teoremy edinstvennosti ryadov Franklina, skhodyaschikhsya k integriruemym funktsiyam”, Matem. sb., 209:6 (2018), 25–46 | DOI

[17] Ph. Franklin, “A set of continuous orthogonal functions”, Math. Ann., 100 (1928), 522–529 | DOI | MR

[18] B. C. Kashin, A. A. Saakyan, Ortogonalnye ryady, Izd-vo AFTs, M., 1999 | MR | Zbl

[19] Z. Ciesielski, “Properties of the orthonormal Franklin system. II”, Studia Math., 27 (1966), 289–323 | DOI | MR

[20] G. G. Gevorkyan, “Teoremy edinstvennosti dlya ryadov Franklina”, Garmonicheskii analiz, teoriya priblizhenii i teoriya chisel, Tr. MIAN, 303, MAIK «Nauka/Interperiodika», M., 2018, 67–86 | DOI

[21] G. G. Gevorkyan, “Teoremy edinstvennosti dlya odnomernykh i dvoinykh ryadov Franklina”, Izv. RAN. Ser. matem., 84:5 (2020), 3–19 | DOI

[22] L. D. Gogoladze, “Ob ogranichennosti skhodyaschikhsya srednikh kratnykh funktsionalnykh ryadov”, Matem. zametki, 34:6 (1983), 845–855 | MR | Zbl

[23] Sh. T. Tetunashvili, “O nekotorykh kratnykh funktsionalnykh ryadakh i reshenie problemy edinstvennosti kratnykh trigonometricheskikh ryadov dlya skhodimosti po Pringskheimu”, Matem. sb., 182:8 (1991), 1158–1176 | MR | Zbl

[24] V. G. Chelidze, Nekotorye metody summirovaniya dvoinykh ryadov i dvoinykh integralov, Izd-vo Tbilisskogo un-ta, Tbilisi, 1977

[25] G. G. Gevorkyan, “O ryadakh po sisteme Franklina”, Anal. Math., 16:2 (1990), 87–114 | DOI | MR