Uniqueness Theorems for Multiple Franklin Series Converging over Rectangles
Matematičeskie zametki, Tome 109 (2021) no. 2, pp. 206-218
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that if a multiple series in the Franklin system converges in the sense of Pringsheim
everywhere, except, perhaps, on a set that is a Cartesian product of sets of measure zero,
to an everywhere finite integrable function,
then it is the Fourier–Franklin series of this function.
A uniqueness theorem is also proved for multiple Franklin series whose
rectangular partial sums at each point have a sequential limit.
Keywords:
Franklin system, multiple series, uniqueness theorem.
@article{MZM_2021_109_2_a4,
author = {G. G. Gevorkyan and L. A. Akopyan},
title = {Uniqueness {Theorems} for {Multiple} {Franklin} {Series} {Converging} over {Rectangles}},
journal = {Matemati\v{c}eskie zametki},
pages = {206--218},
publisher = {mathdoc},
volume = {109},
number = {2},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_2_a4/}
}
TY - JOUR AU - G. G. Gevorkyan AU - L. A. Akopyan TI - Uniqueness Theorems for Multiple Franklin Series Converging over Rectangles JO - Matematičeskie zametki PY - 2021 SP - 206 EP - 218 VL - 109 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2021_109_2_a4/ LA - ru ID - MZM_2021_109_2_a4 ER -
G. G. Gevorkyan; L. A. Akopyan. Uniqueness Theorems for Multiple Franklin Series Converging over Rectangles. Matematičeskie zametki, Tome 109 (2021) no. 2, pp. 206-218. http://geodesic.mathdoc.fr/item/MZM_2021_109_2_a4/