Existence of Solutions to the Second Boundary-Value Problem for the $p$-Laplacian on Riemannian Manifolds
Matematičeskie zametki, Tome 109 (2021) no. 2, pp. 180-195.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain necessary and sufficient conditions for the existence of solutions to the boundary-value problem $$ \Delta_p u=f\quad\text{on}\quad M,\qquad |\nabla u|^{p-2}\,\frac {\partial u}{\partial \nu}\bigg|_{\partial M}=h, $$ where $p > 1$ is a real number, $M$ is a connected oriented complete Riemannian manifold with boundary, and $\nu$ is the outer normal vector to $\partial M$.
Keywords: $p$-Laplacian, Riemannian manifold, Dirichlet integral.
@article{MZM_2021_109_2_a2,
     author = {V. V. Brovkin and A. A. Kon'kov},
     title = {Existence of {Solutions} to the {Second} {Boundary-Value} {Problem} for the $p${-Laplacian} on {Riemannian} {Manifolds}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {180--195},
     publisher = {mathdoc},
     volume = {109},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_2_a2/}
}
TY  - JOUR
AU  - V. V. Brovkin
AU  - A. A. Kon'kov
TI  - Existence of Solutions to the Second Boundary-Value Problem for the $p$-Laplacian on Riemannian Manifolds
JO  - Matematičeskie zametki
PY  - 2021
SP  - 180
EP  - 195
VL  - 109
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_2_a2/
LA  - ru
ID  - MZM_2021_109_2_a2
ER  - 
%0 Journal Article
%A V. V. Brovkin
%A A. A. Kon'kov
%T Existence of Solutions to the Second Boundary-Value Problem for the $p$-Laplacian on Riemannian Manifolds
%J Matematičeskie zametki
%D 2021
%P 180-195
%V 109
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_2_a2/
%G ru
%F MZM_2021_109_2_a2
V. V. Brovkin; A. A. Kon'kov. Existence of Solutions to the Second Boundary-Value Problem for the $p$-Laplacian on Riemannian Manifolds. Matematičeskie zametki, Tome 109 (2021) no. 2, pp. 180-195. http://geodesic.mathdoc.fr/item/MZM_2021_109_2_a2/

[1] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR | Zbl

[2] V. G. Mazya, Prostranstva S. L. Soboleva, Izd-vo Leningradsk. un-ta, L., 1985 | MR | Zbl

[3] V. N. Denisov, “Neobkhodimye i dostatochnye usloviya stabilizatsii resheniya pervoi kraevoi zadachi dlya parabolicheskogo uravneniya”, Tr. sem. im. I. G. Petrovskogo, 29, Izd-vo Mosk. un-ta, M., 2013, 248–280

[4] V. A. Kondratev, O. A. Oleinik, “O periodicheskikh po vremeni resheniyakh parabolicheskogo uravneniya vtorogo poryadka vo vneshnikh oblastyakh”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1985, no. 4, 38–47 | MR | Zbl

[5] A. A. Konkov, Teoremy edinstvennosti dlya ellipticheskikh uravnenii v neogranichennykh oblastyakh, Dis. $\dots$ kand. fiz.-matem. nauk, Mosk. un-t, M., 1988

[6] A. A. Konkov, “O razmernosti prostranstva reshenii ellipticheskikh sistem v neogranichennykh oblastyakh”, Matem. sb., 184:12 (1993), 23–52 | MR | Zbl

[7] S. A. Korolkov, A. G. Losev, “Generalized harmonic functions of Riemannian manifolds with ends”, Math. Z., 272:1-2 (2012), 459–472 | DOI | MR

[8] A. G. Losev, E. A. Mazepa, “On solvability of the boundary value problems for harmonic function on noncompact Riemannian manifolds”, Probl. anal. Issues Anal., 8 (26):3 (2019), 73–82 | DOI | MR

[9] R. R. Gadylshin, G. A. Chechkin, “Kraevaya zadacha dlya laplasiana s bystro menyayuschimsya tipom granichnykh uslovii v mnogomernoi oblasti”, Sib. matem. zhurn., 40:2 (1999), 271–287 | MR | Zbl

[10] A. A. Grigoryan, “O razmernosti prostranstv garmonicheskikh funktsii”, Matem. zametki, 48:5 (1990), 55–61 | MR | Zbl

[11] V. G. Mazya, S. V. Poborchii, “O razreshimosti zadachi Neimana v oblasti s pikom”, Algebra i analiz, 20:5 (2008), 109–154 | MR | Zbl

[12] V. Maz'ya, “Solvability criteria for the Neumann $p$-Laplacian with irregular data”, Algebra i analiz, 30:3 (2018), 129–139 | MR