Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2021_109_2_a2, author = {V. V. Brovkin and A. A. Kon'kov}, title = {Existence of {Solutions} to the {Second} {Boundary-Value} {Problem} for the $p${-Laplacian} on {Riemannian} {Manifolds}}, journal = {Matemati\v{c}eskie zametki}, pages = {180--195}, publisher = {mathdoc}, volume = {109}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_2_a2/} }
TY - JOUR AU - V. V. Brovkin AU - A. A. Kon'kov TI - Existence of Solutions to the Second Boundary-Value Problem for the $p$-Laplacian on Riemannian Manifolds JO - Matematičeskie zametki PY - 2021 SP - 180 EP - 195 VL - 109 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2021_109_2_a2/ LA - ru ID - MZM_2021_109_2_a2 ER -
%0 Journal Article %A V. V. Brovkin %A A. A. Kon'kov %T Existence of Solutions to the Second Boundary-Value Problem for the $p$-Laplacian on Riemannian Manifolds %J Matematičeskie zametki %D 2021 %P 180-195 %V 109 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2021_109_2_a2/ %G ru %F MZM_2021_109_2_a2
V. V. Brovkin; A. A. Kon'kov. Existence of Solutions to the Second Boundary-Value Problem for the $p$-Laplacian on Riemannian Manifolds. Matematičeskie zametki, Tome 109 (2021) no. 2, pp. 180-195. http://geodesic.mathdoc.fr/item/MZM_2021_109_2_a2/
[1] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR | Zbl
[2] V. G. Mazya, Prostranstva S. L. Soboleva, Izd-vo Leningradsk. un-ta, L., 1985 | MR | Zbl
[3] V. N. Denisov, “Neobkhodimye i dostatochnye usloviya stabilizatsii resheniya pervoi kraevoi zadachi dlya parabolicheskogo uravneniya”, Tr. sem. im. I. G. Petrovskogo, 29, Izd-vo Mosk. un-ta, M., 2013, 248–280
[4] V. A. Kondratev, O. A. Oleinik, “O periodicheskikh po vremeni resheniyakh parabolicheskogo uravneniya vtorogo poryadka vo vneshnikh oblastyakh”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1985, no. 4, 38–47 | MR | Zbl
[5] A. A. Konkov, Teoremy edinstvennosti dlya ellipticheskikh uravnenii v neogranichennykh oblastyakh, Dis. $\dots$ kand. fiz.-matem. nauk, Mosk. un-t, M., 1988
[6] A. A. Konkov, “O razmernosti prostranstva reshenii ellipticheskikh sistem v neogranichennykh oblastyakh”, Matem. sb., 184:12 (1993), 23–52 | MR | Zbl
[7] S. A. Korolkov, A. G. Losev, “Generalized harmonic functions of Riemannian manifolds with ends”, Math. Z., 272:1-2 (2012), 459–472 | DOI | MR
[8] A. G. Losev, E. A. Mazepa, “On solvability of the boundary value problems for harmonic function on noncompact Riemannian manifolds”, Probl. anal. Issues Anal., 8 (26):3 (2019), 73–82 | DOI | MR
[9] R. R. Gadylshin, G. A. Chechkin, “Kraevaya zadacha dlya laplasiana s bystro menyayuschimsya tipom granichnykh uslovii v mnogomernoi oblasti”, Sib. matem. zhurn., 40:2 (1999), 271–287 | MR | Zbl
[10] A. A. Grigoryan, “O razmernosti prostranstv garmonicheskikh funktsii”, Matem. zametki, 48:5 (1990), 55–61 | MR | Zbl
[11] V. G. Mazya, S. V. Poborchii, “O razreshimosti zadachi Neimana v oblasti s pikom”, Algebra i analiz, 20:5 (2008), 109–154 | MR | Zbl
[12] V. Maz'ya, “Solvability criteria for the Neumann $p$-Laplacian with irregular data”, Algebra i analiz, 30:3 (2018), 129–139 | MR