Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2021_109_2_a0, author = {R. R. Ashurov}, title = {Almost {Everywhere} {Convergence} of {Multiple} {Trigonometric} {Fourier} {Series} of {Functions} from {Sobolev} {Classes}}, journal = {Matemati\v{c}eskie zametki}, pages = {163--169}, publisher = {mathdoc}, volume = {109}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_2_a0/} }
TY - JOUR AU - R. R. Ashurov TI - Almost Everywhere Convergence of Multiple Trigonometric Fourier Series of Functions from Sobolev Classes JO - Matematičeskie zametki PY - 2021 SP - 163 EP - 169 VL - 109 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2021_109_2_a0/ LA - ru ID - MZM_2021_109_2_a0 ER -
R. R. Ashurov. Almost Everywhere Convergence of Multiple Trigonometric Fourier Series of Functions from Sobolev Classes. Matematičeskie zametki, Tome 109 (2021) no. 2, pp. 163-169. http://geodesic.mathdoc.fr/item/MZM_2021_109_2_a0/
[1] A. Carbery, F. Soria, “Almost everywhere convergence of Fourier integrals for functions in Sobolev spaces, and $L_2$ localization principle”, Rev. Mat. Iberoamericana, 4:2 (1988), 319–337 | DOI | MR
[2] R. R. Ashurov, K. T. Buvaev, “Summiruemost pochti vsyudu kratnykh integralov Fure”, Differents uravneniya, 53:6 (2017), 750–760 | MR
[3] R. R. Ashurov, “O spektralnykh razlozheniyakh ellipticheskikh psevdo-differentsialnykh operatorov”, Uzbekskii matem. zhurn., 6 (1998), 20–29 | MR
[4] C. E. Kenig, P. A. Tomas, “Maximal operators defined by Fourier multipliers”, Studia Math., 68 (1980), 79–83 | DOI | MR
[5] L. Grafakos, Classical Fourier Analysis, Grad. Texts in Math., 249, Springer, New York, 2008 | MR
[6] E. M. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, NJ, 1971 | MR
[7] Sh. A. Alimov, R. R. Ashurov, A. K. Pulatov, “Kratnye ryady i integraly Fure”, Kommutativnyi garmonicheskii analiz – 4, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 42, VINITI, M., 1989, 7–104 | MR | Zbl