Almost Everywhere Convergence of Multiple Trigonometric Fourier Series of Functions from Sobolev Classes
Matematičeskie zametki, Tome 109 (2021) no. 2, pp. 163-169
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we study the almost everywhere convergence of spherical partial
sums of multiple Fourier series of functions from Sobolev classes.
It is proved
that almost everywhere convergence will take place under the same conditions
on the order of smoothness of the expanded function as for multiple Fourier
integrals; these conditions were found in a well-known paper of Carbery and Soria
(1988).
Our reasoning is largely based on the methodology developed
in the work of Kenig and Thomas (1980).
Keywords:
multiple Fourier series, spherical partial sums, almost everywhere convergence
Mots-clés : Sobolev spaces.
Mots-clés : Sobolev spaces.
@article{MZM_2021_109_2_a0,
author = {R. R. Ashurov},
title = {Almost {Everywhere} {Convergence} of {Multiple} {Trigonometric} {Fourier} {Series} of {Functions} from {Sobolev} {Classes}},
journal = {Matemati\v{c}eskie zametki},
pages = {163--169},
publisher = {mathdoc},
volume = {109},
number = {2},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_2_a0/}
}
TY - JOUR AU - R. R. Ashurov TI - Almost Everywhere Convergence of Multiple Trigonometric Fourier Series of Functions from Sobolev Classes JO - Matematičeskie zametki PY - 2021 SP - 163 EP - 169 VL - 109 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2021_109_2_a0/ LA - ru ID - MZM_2021_109_2_a0 ER -
R. R. Ashurov. Almost Everywhere Convergence of Multiple Trigonometric Fourier Series of Functions from Sobolev Classes. Matematičeskie zametki, Tome 109 (2021) no. 2, pp. 163-169. http://geodesic.mathdoc.fr/item/MZM_2021_109_2_a0/