Almost Everywhere Convergence of Multiple Trigonometric Fourier Series of Functions from Sobolev Classes
Matematičeskie zametki, Tome 109 (2021) no. 2, pp. 163-169.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the almost everywhere convergence of spherical partial sums of multiple Fourier series of functions from Sobolev classes. It is proved that almost everywhere convergence will take place under the same conditions on the order of smoothness of the expanded function as for multiple Fourier integrals; these conditions were found in a well-known paper of Carbery and Soria (1988). Our reasoning is largely based on the methodology developed in the work of Kenig and Thomas (1980).
Keywords: multiple Fourier series, spherical partial sums, almost everywhere convergence
Mots-clés : Sobolev spaces.
@article{MZM_2021_109_2_a0,
     author = {R. R. Ashurov},
     title = {Almost {Everywhere} {Convergence} of {Multiple} {Trigonometric} {Fourier} {Series} of {Functions} from {Sobolev} {Classes}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {163--169},
     publisher = {mathdoc},
     volume = {109},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_2_a0/}
}
TY  - JOUR
AU  - R. R. Ashurov
TI  - Almost Everywhere Convergence of Multiple Trigonometric Fourier Series of Functions from Sobolev Classes
JO  - Matematičeskie zametki
PY  - 2021
SP  - 163
EP  - 169
VL  - 109
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_2_a0/
LA  - ru
ID  - MZM_2021_109_2_a0
ER  - 
%0 Journal Article
%A R. R. Ashurov
%T Almost Everywhere Convergence of Multiple Trigonometric Fourier Series of Functions from Sobolev Classes
%J Matematičeskie zametki
%D 2021
%P 163-169
%V 109
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_2_a0/
%G ru
%F MZM_2021_109_2_a0
R. R. Ashurov. Almost Everywhere Convergence of Multiple Trigonometric Fourier Series of Functions from Sobolev Classes. Matematičeskie zametki, Tome 109 (2021) no. 2, pp. 163-169. http://geodesic.mathdoc.fr/item/MZM_2021_109_2_a0/

[1] A. Carbery, F. Soria, “Almost everywhere convergence of Fourier integrals for functions in Sobolev spaces, and $L_2$ localization principle”, Rev. Mat. Iberoamericana, 4:2 (1988), 319–337 | DOI | MR

[2] R. R. Ashurov, K. T. Buvaev, “Summiruemost pochti vsyudu kratnykh integralov Fure”, Differents uravneniya, 53:6 (2017), 750–760 | MR

[3] R. R. Ashurov, “O spektralnykh razlozheniyakh ellipticheskikh psevdo-differentsialnykh operatorov”, Uzbekskii matem. zhurn., 6 (1998), 20–29 | MR

[4] C. E. Kenig, P. A. Tomas, “Maximal operators defined by Fourier multipliers”, Studia Math., 68 (1980), 79–83 | DOI | MR

[5] L. Grafakos, Classical Fourier Analysis, Grad. Texts in Math., 249, Springer, New York, 2008 | MR

[6] E. M. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, NJ, 1971 | MR

[7] Sh. A. Alimov, R. R. Ashurov, A. K. Pulatov, “Kratnye ryady i integraly Fure”, Kommutativnyi garmonicheskii analiz – 4, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 42, VINITI, M., 1989, 7–104 | MR | Zbl