Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2021_109_1_a8, author = {O. Kh. Masaeva}, title = {Uniqueness of the {Solution} of the {Dirichlet} {Problem} for a {Multidimensional} {Differential} {Equation} of {Fractional} {Order}}, journal = {Matemati\v{c}eskie zametki}, pages = {101--106}, publisher = {mathdoc}, volume = {109}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a8/} }
TY - JOUR AU - O. Kh. Masaeva TI - Uniqueness of the Solution of the Dirichlet Problem for a Multidimensional Differential Equation of Fractional Order JO - Matematičeskie zametki PY - 2021 SP - 101 EP - 106 VL - 109 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a8/ LA - ru ID - MZM_2021_109_1_a8 ER -
%0 Journal Article %A O. Kh. Masaeva %T Uniqueness of the Solution of the Dirichlet Problem for a Multidimensional Differential Equation of Fractional Order %J Matematičeskie zametki %D 2021 %P 101-106 %V 109 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a8/ %G ru %F MZM_2021_109_1_a8
O. Kh. Masaeva. Uniqueness of the Solution of the Dirichlet Problem for a Multidimensional Differential Equation of Fractional Order. Matematičeskie zametki, Tome 109 (2021) no. 1, pp. 101-106. http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a8/
[1] A. M. Nakhushev, Drobnoe ischislenie i ego primenenie, Fizmatlit, M., 2003 | Zbl
[2] G. P. Lopushans'ka, “Fundamental boundary value problems for an equation in fractional derivatives”, Ukrainian Math. J., 51:1 (1999), 51–65 | DOI | MR
[3] M. Ferreira, N. Vieira, “Eigenfunctions and fundamental solutions of the fractional Laplace and Dirac operators using Caputo derivatives”, Complex Var. Elliptic Equ., 62:9 (2017), 1237–1253 | DOI | MR | Zbl
[4] O. Kh. Masaeva, “Apriornaya otsenka dlya uravneniya s fraktalnym operatorom Laplasa v glavnoi chasti”, Dokl. Adygskoi (Cherkesskoi) Mezhdunar. AN, 11:1 (2009), 36–37
[5] O. Kh. Masaeva, “Printsip ekstremuma dlya fraktalnogo ellipticheskogo uravneniya”, Dokl. Adygskoi (Cherkesskoi) Mezhdunar. AN, 16:4 (2014), 31–35
[6] V. A. Nakhusheva, Differentsialnye uravneniya matematicheskikh modelei nelokalnykh protsessov, Nauka, M., 2006 | MR | Zbl
[7] O. Kh. Masaeva, “Zadacha Dirikhle dlya obobschennogo uravneniya Laplasa s proizvodnoi Kaputo”, Differents. uravneniya, 48:3 (2012), 442–446 | MR | Zbl
[8] O. Kh. Masaeva, “Zadacha Dirikhle dlya obobschennogo uravneniya Laplasa s drobnoi proizvodnoi”, Chelyabinskii fiz.-matem. zhurn., 2:4 (2017), 312–322
[9] O. Kh. Masaeva, “Zadacha neimana dlya obobschennogo uravneniya Laplasa”, Vestnik KRAUNTs. Fiz.-mat. nauki, 2018, no. 3 (23), 83–90 | DOI | Zbl
[10] B. Kh. Turmetov, B. T. Torebek, “On solvability of some boundary value problems for a fractional analogue of the Helmholtz equation”, New York J. Math., 20 (2014), 1237–1251 | MR | Zbl
[11] Yu. Luchko, “Maximum principle for the generalized time-fractional diffusion equation”, J. Math. Anal. Appl., 351:1 (2009), 218–223 | DOI | MR | Zbl
[12] M. O. Mamchuev, “Analog printsipa Zaremby-Zhiro dlya uravneniya drobnoi diffuzii”, Dokl. Adygskoi (Cherkesskoi) Mezhdunar. AN, 12:2 (2010), 37–40
[13] A. M. Nakhushev, “Obratnye zadachi dlya vyrozhdayuschikhsya uravnenii i integralnye uravneniya Volterra tretego roda”, Differents. uravneniya, 10:1 (1974), 100–111 | MR | Zbl
[14] A. M. Nakhushev, Uravneniya matematicheskoi biologii, Vysshaya shkola, M., 1995
[15] A. B. Pskhu, “O kraevoi zadache dlya uravneniya v chastnykh proizvodnykh drobnogo poryadka v oblasti s krivolineinoi granitsei”, Differents. uravneniya, 51:8 (2015), 1076–1082 | MR | Zbl
[16] A. B. Pskhu, “O prodolzhenii reshenii differentsialnogo uravneniya v chastnykh proizvodnykh drobnogo poryadka”, Differents. uravneniya, 50:1 (2014), 133–136 | MR | Zbl