On Recovering the Sturm--Liouville Differential Operators on Time Scales
Matematičeskie zametki, Tome 109 (2021) no. 1, pp. 82-100

Voir la notice de l'article provenant de la source Math-Net.Ru

We study Sturm–Liouville differential operators on the time scales consisting of a finite number of isolated points and closed intervals. In the author's previous paper, it was established that such operators are uniquely determined by the spectral characteristics of all classical types. In the present paper, an algorithm for their recovery based on the method of spectral mappings is obtained. We also prove that the eigenvalues of two Sturm–Liouville boundary-value problems on time scales with one common boundary condition alternate.
Keywords: inverse spectral problems, closed sets, differential operators
Mots-clés : time scales, Sturm–Liouville equations.
@article{MZM_2021_109_1_a7,
     author = {M. A. Kuznetsova},
     title = {On {Recovering} the {Sturm--Liouville} {Differential} {Operators} on {Time} {Scales}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {82--100},
     publisher = {mathdoc},
     volume = {109},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a7/}
}
TY  - JOUR
AU  - M. A. Kuznetsova
TI  - On Recovering the Sturm--Liouville Differential Operators on Time Scales
JO  - Matematičeskie zametki
PY  - 2021
SP  - 82
EP  - 100
VL  - 109
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a7/
LA  - ru
ID  - MZM_2021_109_1_a7
ER  - 
%0 Journal Article
%A M. A. Kuznetsova
%T On Recovering the Sturm--Liouville Differential Operators on Time Scales
%J Matematičeskie zametki
%D 2021
%P 82-100
%V 109
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a7/
%G ru
%F MZM_2021_109_1_a7
M. A. Kuznetsova. On Recovering the Sturm--Liouville Differential Operators on Time Scales. Matematičeskie zametki, Tome 109 (2021) no. 1, pp. 82-100. http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a7/