On Recovering the Sturm--Liouville Differential Operators on Time Scales
Matematičeskie zametki, Tome 109 (2021) no. 1, pp. 82-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study Sturm–Liouville differential operators on the time scales consisting of a finite number of isolated points and closed intervals. In the author's previous paper, it was established that such operators are uniquely determined by the spectral characteristics of all classical types. In the present paper, an algorithm for their recovery based on the method of spectral mappings is obtained. We also prove that the eigenvalues of two Sturm–Liouville boundary-value problems on time scales with one common boundary condition alternate.
Keywords: inverse spectral problems, closed sets, differential operators
Mots-clés : time scales, Sturm–Liouville equations.
@article{MZM_2021_109_1_a7,
     author = {M. A. Kuznetsova},
     title = {On {Recovering} the {Sturm--Liouville} {Differential} {Operators} on {Time} {Scales}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {82--100},
     publisher = {mathdoc},
     volume = {109},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a7/}
}
TY  - JOUR
AU  - M. A. Kuznetsova
TI  - On Recovering the Sturm--Liouville Differential Operators on Time Scales
JO  - Matematičeskie zametki
PY  - 2021
SP  - 82
EP  - 100
VL  - 109
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a7/
LA  - ru
ID  - MZM_2021_109_1_a7
ER  - 
%0 Journal Article
%A M. A. Kuznetsova
%T On Recovering the Sturm--Liouville Differential Operators on Time Scales
%J Matematičeskie zametki
%D 2021
%P 82-100
%V 109
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a7/
%G ru
%F MZM_2021_109_1_a7
M. A. Kuznetsova. On Recovering the Sturm--Liouville Differential Operators on Time Scales. Matematičeskie zametki, Tome 109 (2021) no. 1, pp. 82-100. http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a7/

[1] V. A. Marchenko, Operatory Shturma–Liuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977 | MR | Zbl

[2] B. M. Levitan, Obratnye zadachi Shturma–Liuvillya, Nauka, M., 1984 | MR

[3] V. A. Yurko, Vvedenie v teoriyu obratnykh spektralnykh zadach, Fizmatlit, M., 2001

[4] S. Hilger, “Analysis on measure chains – a unified approach to continuous and discrete calculus”, Results Math., 18:1-2 (1990), 18–56 | DOI | MR | Zbl

[5] M. Bohner, A. Peterson, Dynamic Equations on Time Scales, Birkhäuser Boston, Boston, MA, 2001 | MR | Zbl

[6] F. M. Atici, D. C. Biles, A. Lebedinsky, “An application of time scales to economics”, Math. Comput. Modelling, 43:7-8 (2006), 718–726 | DOI | MR | Zbl

[7] K. R. Prasad, Md. Khuddush, “Stability of positive almost periodic solutions for a fishing model with multiple time varying variable delays on time scales”, Bull. Int. Math. Virtual Inst., 9:3 (2019), 521–533 | MR | Zbl

[8] S. Ozkan, “Ambarzumyan-type theorems on a time scale”, J. Inverse Ill-Posed Probl., 26:5 (2018), 633–637 | DOI | MR | Zbl

[9] V. A. Ambarzumyan, “Über eine Frage der Eigenwerttheorie”, Z. Phys., 53 (1929), 690–695 | DOI

[10] A. S. Ozkan, I. Adalar, “Half-inverse Sturm–Liouville problem on a time scale”, Inverse Problems, 36:2 (2020), 025015 | DOI | MR | Zbl

[11] S. A. Buterin, M. A. Kuznetsova, V. A. Yurko, On Inverse Spectral Problem for Sturm–Liouville Differential Operators on Closed Sets, 2019, arXiv: 1909.13357

[12] V. Yurko, “Inverse problems for Sturm–Liouville differential operators on closed sets”, Tamkang J. Math., 50:3 (2019), 199–206 | DOI | MR | Zbl

[13] M. Kuznetsova, “A uniqueness theorem on inverse spectral problems for the Sturm–Liouville differential operators on time scales”, Results Math., 75:2 (2020), Paper No. 44 | MR | Zbl

[14] F. Atkinson, Diskretnye i nepreryvnye granichnye zadachi, Mir, M., 1968 | MR

[15] F. R. Gantmakher, M. G. Krein, Ostsillyatsionnye matritsy i yadra i malye kolebaniya mekhanicheskikh sistem, Gostekhizdat, M., 1950 | MR | Zbl

[16] G. Sh. Guseinov, H. Tuncay, “On the inverse scattering problem for a discrete one-dimensional Schrödinger equation”, Comm. Fac. Sci. Univ. Ankara Ser. A1 Math. Statist., 44:1-2 (1995), 95–102 | MR | Zbl

[17] Ag. Kh. Khanmamedov, “Obratnaya zadacha rasseyaniya dlya vozmuschennogo raznostnogo uravneniya Khilla”, Matem. zametki, 85:3 (2009), 456–469 | DOI | MR | Zbl

[18] V. A. Yurko, “An inverse problem for operators of a triangular structure”, Results Math., 30:3-4 (1996), 346–373 | DOI | MR | Zbl

[19] M. Bohner, H. Koyunbakan, “Inverse problems for Sturm–Liouville difference equations”, Filomat, 30 (2016), 1297–1304 | DOI | MR | Zbl

[20] T. Aktosun, V. G. Papanicolaou, “Inverse problem with transmission eigenvalues for the discrete Schrödinger equation”, J. Math. Phys., 56:8 (2015), 082101 | MR | Zbl

[21] V. A. Yurko, “O kraevykh zadachakh s usloviyami razryva vnutri intervala”, Differents. uravneniya, 36:8 (2000), 1139–1140 | MR | Zbl

[22] I. M. Guseinov, F. Z. Dostuev, “Obratnye zadachi dlya operatora Shturma–Liuvillya s usloviyami razryva”, Matem. zametki, 105:6 (2019), 932–936 | DOI | Zbl

[23] N. P. Bondarenko, “An inverse problem for the non-self-adjoint matrix Sturm–Liouville operator”, Tamkang J. Math., 50:1 (2018), 71–102 | DOI | MR

[24] M. A. Kuznetsova, “Asymptotic formulae for weight numbers of the Sturm–Liouville boundary problem on a star-shaped graph”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 18:1 (2018), 40–48 | DOI | MR | Zbl

[25] V. A. Yurko, “O vosstanovlenii operatorov Shturma–Liuvillya na grafakh”, Matem. zametki, 79:4 (2006), 619–630 | DOI | MR | Zbl

[26] R. P. Agarwal, M. Bohner, P. J. Y. Wong, “Sturm–Liouville eigenvalue problems on time scales”, Appl. Math. Comput., 99:2–3 (1999), 153–166 | DOI | MR | Zbl

[27] N. Bondarenko, “Recovery of the matrix quadratic differential pencil from the spectral data”, J. Inverse Ill-Posed Probl., 24:3 (2016), 245–263 | DOI | MR | Zbl

[28] S. A. Buterin, V. A. Yurko, “Inverse problems for second-order differential pencils with Dirichlet boundary conditions”, J. Inverse Ill-Posed Probl., 20:5-6 (2012), 855–881 | MR | Zbl