Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2021_109_1_a7, author = {M. A. Kuznetsova}, title = {On {Recovering} the {Sturm--Liouville} {Differential} {Operators} on {Time} {Scales}}, journal = {Matemati\v{c}eskie zametki}, pages = {82--100}, publisher = {mathdoc}, volume = {109}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a7/} }
M. A. Kuznetsova. On Recovering the Sturm--Liouville Differential Operators on Time Scales. Matematičeskie zametki, Tome 109 (2021) no. 1, pp. 82-100. http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a7/
[1] V. A. Marchenko, Operatory Shturma–Liuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977 | MR | Zbl
[2] B. M. Levitan, Obratnye zadachi Shturma–Liuvillya, Nauka, M., 1984 | MR
[3] V. A. Yurko, Vvedenie v teoriyu obratnykh spektralnykh zadach, Fizmatlit, M., 2001
[4] S. Hilger, “Analysis on measure chains – a unified approach to continuous and discrete calculus”, Results Math., 18:1-2 (1990), 18–56 | DOI | MR | Zbl
[5] M. Bohner, A. Peterson, Dynamic Equations on Time Scales, Birkhäuser Boston, Boston, MA, 2001 | MR | Zbl
[6] F. M. Atici, D. C. Biles, A. Lebedinsky, “An application of time scales to economics”, Math. Comput. Modelling, 43:7-8 (2006), 718–726 | DOI | MR | Zbl
[7] K. R. Prasad, Md. Khuddush, “Stability of positive almost periodic solutions for a fishing model with multiple time varying variable delays on time scales”, Bull. Int. Math. Virtual Inst., 9:3 (2019), 521–533 | MR | Zbl
[8] S. Ozkan, “Ambarzumyan-type theorems on a time scale”, J. Inverse Ill-Posed Probl., 26:5 (2018), 633–637 | DOI | MR | Zbl
[9] V. A. Ambarzumyan, “Über eine Frage der Eigenwerttheorie”, Z. Phys., 53 (1929), 690–695 | DOI
[10] A. S. Ozkan, I. Adalar, “Half-inverse Sturm–Liouville problem on a time scale”, Inverse Problems, 36:2 (2020), 025015 | DOI | MR | Zbl
[11] S. A. Buterin, M. A. Kuznetsova, V. A. Yurko, On Inverse Spectral Problem for Sturm–Liouville Differential Operators on Closed Sets, 2019, arXiv: 1909.13357
[12] V. Yurko, “Inverse problems for Sturm–Liouville differential operators on closed sets”, Tamkang J. Math., 50:3 (2019), 199–206 | DOI | MR | Zbl
[13] M. Kuznetsova, “A uniqueness theorem on inverse spectral problems for the Sturm–Liouville differential operators on time scales”, Results Math., 75:2 (2020), Paper No. 44 | MR | Zbl
[14] F. Atkinson, Diskretnye i nepreryvnye granichnye zadachi, Mir, M., 1968 | MR
[15] F. R. Gantmakher, M. G. Krein, Ostsillyatsionnye matritsy i yadra i malye kolebaniya mekhanicheskikh sistem, Gostekhizdat, M., 1950 | MR | Zbl
[16] G. Sh. Guseinov, H. Tuncay, “On the inverse scattering problem for a discrete one-dimensional Schrödinger equation”, Comm. Fac. Sci. Univ. Ankara Ser. A1 Math. Statist., 44:1-2 (1995), 95–102 | MR | Zbl
[17] Ag. Kh. Khanmamedov, “Obratnaya zadacha rasseyaniya dlya vozmuschennogo raznostnogo uravneniya Khilla”, Matem. zametki, 85:3 (2009), 456–469 | DOI | MR | Zbl
[18] V. A. Yurko, “An inverse problem for operators of a triangular structure”, Results Math., 30:3-4 (1996), 346–373 | DOI | MR | Zbl
[19] M. Bohner, H. Koyunbakan, “Inverse problems for Sturm–Liouville difference equations”, Filomat, 30 (2016), 1297–1304 | DOI | MR | Zbl
[20] T. Aktosun, V. G. Papanicolaou, “Inverse problem with transmission eigenvalues for the discrete Schrödinger equation”, J. Math. Phys., 56:8 (2015), 082101 | MR | Zbl
[21] V. A. Yurko, “O kraevykh zadachakh s usloviyami razryva vnutri intervala”, Differents. uravneniya, 36:8 (2000), 1139–1140 | MR | Zbl
[22] I. M. Guseinov, F. Z. Dostuev, “Obratnye zadachi dlya operatora Shturma–Liuvillya s usloviyami razryva”, Matem. zametki, 105:6 (2019), 932–936 | DOI | Zbl
[23] N. P. Bondarenko, “An inverse problem for the non-self-adjoint matrix Sturm–Liouville operator”, Tamkang J. Math., 50:1 (2018), 71–102 | DOI | MR
[24] M. A. Kuznetsova, “Asymptotic formulae for weight numbers of the Sturm–Liouville boundary problem on a star-shaped graph”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 18:1 (2018), 40–48 | DOI | MR | Zbl
[25] V. A. Yurko, “O vosstanovlenii operatorov Shturma–Liuvillya na grafakh”, Matem. zametki, 79:4 (2006), 619–630 | DOI | MR | Zbl
[26] R. P. Agarwal, M. Bohner, P. J. Y. Wong, “Sturm–Liouville eigenvalue problems on time scales”, Appl. Math. Comput., 99:2–3 (1999), 153–166 | DOI | MR | Zbl
[27] N. Bondarenko, “Recovery of the matrix quadratic differential pencil from the spectral data”, J. Inverse Ill-Posed Probl., 24:3 (2016), 245–263 | DOI | MR | Zbl
[28] S. A. Buterin, V. A. Yurko, “Inverse problems for second-order differential pencils with Dirichlet boundary conditions”, J. Inverse Ill-Posed Probl., 20:5-6 (2012), 855–881 | MR | Zbl