On Orbits and Bi-invariant Subsets of Binary $G$-Spaces
Matematičeskie zametki, Tome 109 (2021) no. 1, pp. 47-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

Orbits and bi-invariant subsets of binary $G$-spaces are studied. The problem of the distributivity of a binary action of a group $G$ on a space $X$, which was posed in 2016 by one of the authors, is solved.
Keywords: binary operation, topological group, homeomorphism group, representation of a topological group.
@article{MZM_2021_109_1_a4,
     author = {P. S. Gevorgyan and A. A. Nazaryan},
     title = {On {Orbits} and {Bi-invariant} {Subsets} of {Binary} $G${-Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {47--56},
     publisher = {mathdoc},
     volume = {109},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a4/}
}
TY  - JOUR
AU  - P. S. Gevorgyan
AU  - A. A. Nazaryan
TI  - On Orbits and Bi-invariant Subsets of Binary $G$-Spaces
JO  - Matematičeskie zametki
PY  - 2021
SP  - 47
EP  - 56
VL  - 109
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a4/
LA  - ru
ID  - MZM_2021_109_1_a4
ER  - 
%0 Journal Article
%A P. S. Gevorgyan
%A A. A. Nazaryan
%T On Orbits and Bi-invariant Subsets of Binary $G$-Spaces
%J Matematičeskie zametki
%D 2021
%P 47-56
%V 109
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a4/
%G ru
%F MZM_2021_109_1_a4
P. S. Gevorgyan; A. A. Nazaryan. On Orbits and Bi-invariant Subsets of Binary $G$-Spaces. Matematičeskie zametki, Tome 109 (2021) no. 1, pp. 47-56. http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a4/

[1] P. S. Gevorgyan, “Groups of binary operations and binary G-spaces”, Topology Appl., 201 (2016), 18–28 | DOI | MR | Zbl

[2] P. S. Gevorkyan, “O binarnykh $G$-prostranstvakh”, Matem. zametki, 96:4 (2014), 623–626 | DOI | MR | Zbl

[3] P. S. Gevorkyan, “Gruppy obratimykh binarnykh operatsii topologicheskogo prostranstva”, Izv. NAN Armenii. Matem., 53:1 (2018), 37–44 | MR | Zbl

[4] G. E. Bredon, Introduction to Compact Transformation Groups, Academic Press, New York, 1972 | MR | Zbl

[5] A. G. Kurosh, Teoriya grupp, Nauka, M., 1967 | MR | Zbl