On Orbits and Bi-invariant Subsets of Binary $G$-Spaces
Matematičeskie zametki, Tome 109 (2021) no. 1, pp. 47-56
Cet article a éte moissonné depuis la source Math-Net.Ru
Orbits and bi-invariant subsets of binary $G$-spaces are studied. The problem of the distributivity of a binary action of a group $G$ on a space $X$, which was posed in 2016 by one of the authors, is solved.
Keywords:
binary operation, topological group, homeomorphism group, representation of a topological group.
@article{MZM_2021_109_1_a4,
author = {P. S. Gevorgyan and A. A. Nazaryan},
title = {On {Orbits} and {Bi-invariant} {Subsets} of {Binary} $G${-Spaces}},
journal = {Matemati\v{c}eskie zametki},
pages = {47--56},
year = {2021},
volume = {109},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a4/}
}
P. S. Gevorgyan; A. A. Nazaryan. On Orbits and Bi-invariant Subsets of Binary $G$-Spaces. Matematičeskie zametki, Tome 109 (2021) no. 1, pp. 47-56. http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a4/
[1] P. S. Gevorgyan, “Groups of binary operations and binary G-spaces”, Topology Appl., 201 (2016), 18–28 | DOI | MR | Zbl
[2] P. S. Gevorkyan, “O binarnykh $G$-prostranstvakh”, Matem. zametki, 96:4 (2014), 623–626 | DOI | MR | Zbl
[3] P. S. Gevorkyan, “Gruppy obratimykh binarnykh operatsii topologicheskogo prostranstva”, Izv. NAN Armenii. Matem., 53:1 (2018), 37–44 | MR | Zbl
[4] G. E. Bredon, Introduction to Compact Transformation Groups, Academic Press, New York, 1972 | MR | Zbl