Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2021_109_1_a3, author = {V. A. Voronov and E. A. Dergachev and M. E. Zhukovskii and A. M. Neopryatnaya}, title = {First-Order {Complexity} of {Subgraph} {Isomorphism} via {Kneser} {Graphs}}, journal = {Matemati\v{c}eskie zametki}, pages = {36--46}, publisher = {mathdoc}, volume = {109}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a3/} }
TY - JOUR AU - V. A. Voronov AU - E. A. Dergachev AU - M. E. Zhukovskii AU - A. M. Neopryatnaya TI - First-Order Complexity of Subgraph Isomorphism via Kneser Graphs JO - Matematičeskie zametki PY - 2021 SP - 36 EP - 46 VL - 109 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a3/ LA - ru ID - MZM_2021_109_1_a3 ER -
%0 Journal Article %A V. A. Voronov %A E. A. Dergachev %A M. E. Zhukovskii %A A. M. Neopryatnaya %T First-Order Complexity of Subgraph Isomorphism via Kneser Graphs %J Matematičeskie zametki %D 2021 %P 36-46 %V 109 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a3/ %G ru %F MZM_2021_109_1_a3
V. A. Voronov; E. A. Dergachev; M. E. Zhukovskii; A. M. Neopryatnaya. First-Order Complexity of Subgraph Isomorphism via Kneser Graphs. Matematičeskie zametki, Tome 109 (2021) no. 1, pp. 36-46. http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a3/
[1] N. K. Vereschagin, A. Shen, Yazyki i ischisleniya, MTsNMO, M., 2000
[2] L. Libkin, Elements of Finite Model Theory, Springer-Verlag, Berlin, 2004 | MR | Zbl
[3] O. Verbitsky, M. Zhukovskii, “he descriptive complexity of subgraph isomorphism without numerics”, Theory Comput. Syst., 63:4 (2019), 902–921 | DOI | MR | Zbl
[4] J. Spencer, The Strange Logic of Random Graphs, Algorithms Combin., 22, Springer-Verlag, Berlin, 2001 | MR | Zbl
[5] L. Lovász, “Kneser's conjecture, chromatic number, and homotopy”, J. Combin. Theory Ser. A, 25:3 (1978), 319–324 | DOI | MR | Zbl
[6] M. E. Watkins, “Connectivity of transitive graphs”, J. Combinatorial Theory, 8 (1970), 23–29 | DOI | MR | Zbl
[7] M. Valencia-Pabon, J. C. Vera, “On the diameter of Kneser graphs”, Discrete Math., 305:1-3 (2005), 383–385 | DOI | MR | Zbl
[8] S. Poljak, Z. Tuza, “Maximum bipartite subgraphs of Kneser graphs”, Graphs Combin., 3:2 (1987), 191–199 | DOI | MR | Zbl