Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2021_109_1_a2, author = {S. S. Volosivets and S. A. Krayukhin}, title = {Criteria for a {Function} to {Belong} to the $p${-Variational} {Besov} {Space}}, journal = {Matemati\v{c}eskie zametki}, pages = {27--35}, publisher = {mathdoc}, volume = {109}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a2/} }
TY - JOUR AU - S. S. Volosivets AU - S. A. Krayukhin TI - Criteria for a Function to Belong to the $p$-Variational Besov Space JO - Matematičeskie zametki PY - 2021 SP - 27 EP - 35 VL - 109 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a2/ LA - ru ID - MZM_2021_109_1_a2 ER -
S. S. Volosivets; S. A. Krayukhin. Criteria for a Function to Belong to the $p$-Variational Besov Space. Matematičeskie zametki, Tome 109 (2021) no. 1, pp. 27-35. http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a2/
[1] S. S. Volosivets, “Convergence of series of Fourier coefficients of $p$-absolutely continuous functions”, Anal. Math., 26:1 (2000), 63–80 | DOI | MR | Zbl
[2] N. Wiener, “The quadratic variation of a function and its Fourier coefficients”, J. Math. and Phys., 3:2 (1924), 72–94 | DOI | Zbl
[3] L. C. Young, “An inequality of Hölder type connected with Stieltjes integration”, Acta Math., 67 (1936), 251–282 | DOI | MR
[4] A. P. Terekhin, “Priblizhenie funktsii ogranichennoi $p$-variatsii”, Izv. vuzov. Matem., 1965, no. 2, 171–187 | MR | Zbl
[5] S. S. Volosivets, “Utochnennye teoremy teorii priblizheniya v prostranstve $p$-absolyutno nepreryvnykh funktsii”, Matem. zametki, 80:5 (2006), 701–711 | DOI | MR | Zbl
[6] A. P. Terekhin, “Integralnye svoistva gladkosti periodicheskikh funktsii ogranichennoi $p$-variatsii”, Matem. zametki, 2:3 (1967), 289–300 | MR | Zbl
[7] P. L. Butzer, K. Scherer, “On the fundamental approximation theorems of D. Jackson, S. N. Bernstein and theorems of M. Zamansky and S. B. Stečkin”, Aequationes Math., 3 (1969), 170–185 | DOI | MR | Zbl
[8] S. S. Volosivets, A. A. Tyuleneva, “Generalized monotonicity of sequences and functions of bounded $p$-variation”, Acta Sci. Math. (Szeged), 82:1-2 (2016), 111–124 | DOI | MR | Zbl
[9] H. K. Bari, Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR
[10] A. F. Timan, Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatlit, M., 1960 | MR
[11] G. G. Khardi, Dzh. E. Littlvud, G. Polia, Neravenstva, IL, M., 1948 | MR | Zbl
[12] L. Leindler, “Generalization of inequalities of Hardy and Littlewood”, Acta Sci. Math. (Szeged), 31 (1970), 279–285 | MR | Zbl
[13] B. I. Golubov, “O nailuchshem priblizhenii $p$-absolyutno nepreryvnykh funktsii”, Nekotorye voprosy teorii funktsii i funktsionalnogo analiza, 4, Izd-vo Tbil. un-ta, Tbilisi, 1988, 85–99
[14] I. P. Natanson, Konstruktivnaya teoriya funktsii, GITTL, M.–L., 1949 | MR | Zbl
[15] S. M. Nikolskii, Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR | Zbl
[16] O. V. Besov, “O nekotorykh usloviyakh prinadlezhnosti k $L_p$ proizvodnykh periodicheskikh funktsii”, Nauchn. dokl. vyssh. shkoly. Ser. fiz.-matem. nauki, 1959, no. 1, 13–17 | Zbl
[17] F. Holland, D. Walsh, “Criteria for membership of the Besov spaces $B^s_{pq}$”, Math. Ann., 285:4 (1989), 571–592 | DOI | MR | Zbl