Criteria for a Function to Belong to the $p$-Variational Besov Space
Matematičeskie zametki, Tome 109 (2021) no. 1, pp. 27-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary and sufficient conditions for a function to belong to the Besov space constructed from the space $V_p$ of functions of bounded $p$-variation are studied. These conditions are expressed in terms of approximations of functions by Fourier partial sums and Fejér means, as well as in terms of the norms of the derivatives of the approximating polynomials in $V_p$.
Mots-clés : Besov space
Keywords: Fourier partial sums, Fejér means.
@article{MZM_2021_109_1_a2,
     author = {S. S. Volosivets and S. A. Krayukhin},
     title = {Criteria for a {Function} to {Belong} to the $p${-Variational} {Besov} {Space}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {27--35},
     publisher = {mathdoc},
     volume = {109},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a2/}
}
TY  - JOUR
AU  - S. S. Volosivets
AU  - S. A. Krayukhin
TI  - Criteria for a Function to Belong to the $p$-Variational Besov Space
JO  - Matematičeskie zametki
PY  - 2021
SP  - 27
EP  - 35
VL  - 109
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a2/
LA  - ru
ID  - MZM_2021_109_1_a2
ER  - 
%0 Journal Article
%A S. S. Volosivets
%A S. A. Krayukhin
%T Criteria for a Function to Belong to the $p$-Variational Besov Space
%J Matematičeskie zametki
%D 2021
%P 27-35
%V 109
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a2/
%G ru
%F MZM_2021_109_1_a2
S. S. Volosivets; S. A. Krayukhin. Criteria for a Function to Belong to the $p$-Variational Besov Space. Matematičeskie zametki, Tome 109 (2021) no. 1, pp. 27-35. http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a2/

[1] S. S. Volosivets, “Convergence of series of Fourier coefficients of $p$-absolutely continuous functions”, Anal. Math., 26:1 (2000), 63–80 | DOI | MR | Zbl

[2] N. Wiener, “The quadratic variation of a function and its Fourier coefficients”, J. Math. and Phys., 3:2 (1924), 72–94 | DOI | Zbl

[3] L. C. Young, “An inequality of Hölder type connected with Stieltjes integration”, Acta Math., 67 (1936), 251–282 | DOI | MR

[4] A. P. Terekhin, “Priblizhenie funktsii ogranichennoi $p$-variatsii”, Izv. vuzov. Matem., 1965, no. 2, 171–187 | MR | Zbl

[5] S. S. Volosivets, “Utochnennye teoremy teorii priblizheniya v prostranstve $p$-absolyutno nepreryvnykh funktsii”, Matem. zametki, 80:5 (2006), 701–711 | DOI | MR | Zbl

[6] A. P. Terekhin, “Integralnye svoistva gladkosti periodicheskikh funktsii ogranichennoi $p$-variatsii”, Matem. zametki, 2:3 (1967), 289–300 | MR | Zbl

[7] P. L. Butzer, K. Scherer, “On the fundamental approximation theorems of D. Jackson, S. N. Bernstein and theorems of M. Zamansky and S. B. Stečkin”, Aequationes Math., 3 (1969), 170–185 | DOI | MR | Zbl

[8] S. S. Volosivets, A. A. Tyuleneva, “Generalized monotonicity of sequences and functions of bounded $p$-variation”, Acta Sci. Math. (Szeged), 82:1-2 (2016), 111–124 | DOI | MR | Zbl

[9] H. K. Bari, Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR

[10] A. F. Timan, Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatlit, M., 1960 | MR

[11] G. G. Khardi, Dzh. E. Littlvud, G. Polia, Neravenstva, IL, M., 1948 | MR | Zbl

[12] L. Leindler, “Generalization of inequalities of Hardy and Littlewood”, Acta Sci. Math. (Szeged), 31 (1970), 279–285 | MR | Zbl

[13] B. I. Golubov, “O nailuchshem priblizhenii $p$-absolyutno nepreryvnykh funktsii”, Nekotorye voprosy teorii funktsii i funktsionalnogo analiza, 4, Izd-vo Tbil. un-ta, Tbilisi, 1988, 85–99

[14] I. P. Natanson, Konstruktivnaya teoriya funktsii, GITTL, M.–L., 1949 | MR | Zbl

[15] S. M. Nikolskii, Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR | Zbl

[16] O. V. Besov, “O nekotorykh usloviyakh prinadlezhnosti k $L_p$ proizvodnykh periodicheskikh funktsii”, Nauchn. dokl. vyssh. shkoly. Ser. fiz.-matem. nauki, 1959, no. 1, 13–17 | Zbl

[17] F. Holland, D. Walsh, “Criteria for membership of the Besov spaces $B^s_{pq}$”, Math. Ann., 285:4 (1989), 571–592 | DOI | MR | Zbl