Optimal Dividend Policy when Cash Surplus Follows the Telegraph Process
Matematičeskie zametki, Tome 109 (2021) no. 1, pp. 135-149.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article contributes to research dealing with the optimal dividend policy problem of a firm whose goal is to maximize the expected total discounted dividend payments before bankruptcy. We consider a model of a firm whose cash surplus exhibits regime switching, but unlike the existing literature, we exclude diffusion from our model. We assume that firm's cash surplus follows the telegraph process, which leads to a problem of singular stochastic control. Surprisingly, this problem turns out to be more complicated than the ones arising in the models involving diffusion. We solve this problem by using the method of variational inequalities and show that the optimal dividend policy can be of three significantly different types depending on the parameters of the model.
Keywords: stochastic optimal control, regime switching, telegraph process, dividend policy.
@article{MZM_2021_109_1_a12,
     author = {I. G. Pospelov and S. A. Radionov},
     title = {Optimal {Dividend} {Policy} when {Cash} {Surplus} {Follows} the {Telegraph} {Process}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {135--149},
     publisher = {mathdoc},
     volume = {109},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a12/}
}
TY  - JOUR
AU  - I. G. Pospelov
AU  - S. A. Radionov
TI  - Optimal Dividend Policy when Cash Surplus Follows the Telegraph Process
JO  - Matematičeskie zametki
PY  - 2021
SP  - 135
EP  - 149
VL  - 109
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a12/
LA  - ru
ID  - MZM_2021_109_1_a12
ER  - 
%0 Journal Article
%A I. G. Pospelov
%A S. A. Radionov
%T Optimal Dividend Policy when Cash Surplus Follows the Telegraph Process
%J Matematičeskie zametki
%D 2021
%P 135-149
%V 109
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a12/
%G ru
%F MZM_2021_109_1_a12
I. G. Pospelov; S. A. Radionov. Optimal Dividend Policy when Cash Surplus Follows the Telegraph Process. Matematičeskie zametki, Tome 109 (2021) no. 1, pp. 135-149. http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a12/

[1] B. de Finetti, “Su un'lmpostazione alternativa della teoria collettiva del rischio”, Proceedings of the Transactions of the XV International Congress of Actuaries, New York, 1957, 433–443

[2] R. Radner, L. Shepp, “Risk vs Profit Potential: A Model for Corporate Strategy”, J. Economic Dynamics and Control, 20:8 (1996), 1373–1393 | DOI | Zbl

[3] M. Zhanblan-Pike, A. N. Shiryaev, “Optimizatsiya potoka dividendov”, UMN, 50:2 (302) (1995), 25–46 | MR | Zbl

[4] S. Asmussen, M. Taksar, “Controlled diffusion models for optimal dividend pay-out”, Insurance Math. Econom., 20:1 (1997), 1–15 | DOI | MR | Zbl

[5] M. Belhaj, “Optimal dividend payments when cash reserves follow a jump-diffusion process”, Math. Finance, 20:2 (2010), 313–325 | DOI | MR | Zbl

[6] M. I. Taksar, “Dependence of the optimal risk control decisions on the terminal value for a financial corporation”, Ann. Oper. Res., 98:1 (2000), 89–99 | DOI | MR | Zbl

[7] J.-P. Décamps, S. Villeneuve, “Optimal dividend policy and growth option”, Finance Stoch., 11:1 (2007), 3–27 | MR

[8] J. Paulsen, “Optimal dividend payments until ruin of diffusion processes when payments are subject to both fixed and proportional costs”, Adv. in Appl. Probab., 39:3 (2007), 669–689 | DOI | MR | Zbl

[9] S. Sethi, M. Taksar, “Optimal financing of a corporation subject to random returns”, Math. Finance, 12:2 (2002), 155–172 | DOI | MR | Zbl

[10] S. Goldstein, “On diffusion by discontinuous movements, and on the telegraph equation”, Quart. J. Mech. Appl. Math., 4:2 (1951), 129–156 | DOI | MR | Zbl

[11] M. Kac, “A stochastic model related to the telegrapher's equation”, Rocky Mountain J. Math., 4:3 (1974), 497–509 | DOI | MR | Zbl

[12] E. Orsingher, “Probability law, flow function, maximum distribution of wave-governed random motions and their connections with Kirchoff's laws”, Stochastic Process. Appl., 34:1 (1990), 49–66 | DOI | MR | Zbl

[13] S. K. Foong, S. Kanno, “Properties of the telegrapher's random without a trap”, Stochastic Process. Appl., 53:1 (1994), 147–173 | DOI | MR | Zbl

[14] L. Beghin, L. Nieddu, E. Orsingher, “Probabilistic analysis of the telegrapher's process with drift by means of relativistic transformations”, J. Appl. Math. Stochastic Anal., 14:1 (2001), 11–25 | DOI | MR | Zbl

[15] Dzh. B. Di Mazi, Yu. M. Kabanov, V. I. Runggalder, “Khedzhirovanie optsionov na aktsiyu pri srednekvadratichnom kriterii i markovskikh volatilnostyakh”, Teoriya veroyatn. i ee primen., 39:1 (1994), 211–222 | MR | Zbl

[16] Yu. V. Bondarenko, “A probabilistic model for describing the evolution of financial indices”, Cybernet. Systems Anal., 36:5 (2000), 738–742 | DOI | MR | Zbl

[17] A. Di Crescenzo, F. Pellerey, “On prices' evolutions based on geometric telegrapher's process”, Appl. Stoch. Models Bus. Ind., 18:2 (2002), 171–184 | DOI | MR | Zbl

[18] N. Ratanov, “A jump telegraph model for option pricing”, Quant. Finance, 7:5 (2007), 575–583 | DOI | MR | Zbl

[19] N. Ratanov, A. Melnikov, “On Financial markets based on telegraph processes”, Stochastics, 80:2-3 (2008), 247–268 | DOI | MR | Zbl

[20] N. Ratanov, “Option pricing model based on a Markov-modulated diffusion with jumps”, Braz. J. Probab. Stat., 24:2 (2010), 413–431 | DOI | MR | Zbl

[21] O. López, N. Ratanov, “Option pricing driven by a telegraph process with random jumps”, J. Appl. Probab., 49:3 (2012), 838–849 | DOI | MR | Zbl

[22] L. R. Sotomayor, A. Cadenillas, “Classical and singular stochastic control for the optimal dividend policy when there is regime switching”, Insurance Math. Econom., 48 (2011), 344–354 | DOI | MR | Zbl

[23] J. Zhu, F. Chen, “Dividend optimization for regime-switching general diffusions”, Insurance Math. Econom., 53:2 (2013), 439–456 | DOI | MR | Zbl

[24] Z. Jiang, M. Pistorius, “Optimal dividend distribution under Markov regime switching”, Finance Stoch., 16:3 (2012), 449–476 | DOI | MR | Zbl

[25] J. Wei, R. Wang, H. Yang, “On the optimal dividend strategy in a regime-switching diffusion model”, Adv. in Appl. Probab., 44:3 (2012), 886–906 | DOI | MR | Zbl

[26] Z. Jiang, “Optimal dividend policy when cash reserves follow a jump-diffusion process under Markov-regime switching”, J. Appl. Probab., 52:1 (2015), 209–223 | DOI | MR | Zbl

[27] W. H. Fleming, R. W. Rishel, Deterministic and Stochastic Optimal Control, Springer-Verlag, 1975 | MR | Zbl

[28] W. Fleming, H. M. Soner, Controlled Markov Processes and Viscosity Solutions, Stoch. Model. Appl. Probab., 25, Springer, New York, 2006 | MR | Zbl