Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2021_109_1_a12, author = {I. G. Pospelov and S. A. Radionov}, title = {Optimal {Dividend} {Policy} when {Cash} {Surplus} {Follows} the {Telegraph} {Process}}, journal = {Matemati\v{c}eskie zametki}, pages = {135--149}, publisher = {mathdoc}, volume = {109}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a12/} }
TY - JOUR AU - I. G. Pospelov AU - S. A. Radionov TI - Optimal Dividend Policy when Cash Surplus Follows the Telegraph Process JO - Matematičeskie zametki PY - 2021 SP - 135 EP - 149 VL - 109 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a12/ LA - ru ID - MZM_2021_109_1_a12 ER -
I. G. Pospelov; S. A. Radionov. Optimal Dividend Policy when Cash Surplus Follows the Telegraph Process. Matematičeskie zametki, Tome 109 (2021) no. 1, pp. 135-149. http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a12/
[1] B. de Finetti, “Su un'lmpostazione alternativa della teoria collettiva del rischio”, Proceedings of the Transactions of the XV International Congress of Actuaries, New York, 1957, 433–443
[2] R. Radner, L. Shepp, “Risk vs Profit Potential: A Model for Corporate Strategy”, J. Economic Dynamics and Control, 20:8 (1996), 1373–1393 | DOI | Zbl
[3] M. Zhanblan-Pike, A. N. Shiryaev, “Optimizatsiya potoka dividendov”, UMN, 50:2 (302) (1995), 25–46 | MR | Zbl
[4] S. Asmussen, M. Taksar, “Controlled diffusion models for optimal dividend pay-out”, Insurance Math. Econom., 20:1 (1997), 1–15 | DOI | MR | Zbl
[5] M. Belhaj, “Optimal dividend payments when cash reserves follow a jump-diffusion process”, Math. Finance, 20:2 (2010), 313–325 | DOI | MR | Zbl
[6] M. I. Taksar, “Dependence of the optimal risk control decisions on the terminal value for a financial corporation”, Ann. Oper. Res., 98:1 (2000), 89–99 | DOI | MR | Zbl
[7] J.-P. Décamps, S. Villeneuve, “Optimal dividend policy and growth option”, Finance Stoch., 11:1 (2007), 3–27 | MR
[8] J. Paulsen, “Optimal dividend payments until ruin of diffusion processes when payments are subject to both fixed and proportional costs”, Adv. in Appl. Probab., 39:3 (2007), 669–689 | DOI | MR | Zbl
[9] S. Sethi, M. Taksar, “Optimal financing of a corporation subject to random returns”, Math. Finance, 12:2 (2002), 155–172 | DOI | MR | Zbl
[10] S. Goldstein, “On diffusion by discontinuous movements, and on the telegraph equation”, Quart. J. Mech. Appl. Math., 4:2 (1951), 129–156 | DOI | MR | Zbl
[11] M. Kac, “A stochastic model related to the telegrapher's equation”, Rocky Mountain J. Math., 4:3 (1974), 497–509 | DOI | MR | Zbl
[12] E. Orsingher, “Probability law, flow function, maximum distribution of wave-governed random motions and their connections with Kirchoff's laws”, Stochastic Process. Appl., 34:1 (1990), 49–66 | DOI | MR | Zbl
[13] S. K. Foong, S. Kanno, “Properties of the telegrapher's random without a trap”, Stochastic Process. Appl., 53:1 (1994), 147–173 | DOI | MR | Zbl
[14] L. Beghin, L. Nieddu, E. Orsingher, “Probabilistic analysis of the telegrapher's process with drift by means of relativistic transformations”, J. Appl. Math. Stochastic Anal., 14:1 (2001), 11–25 | DOI | MR | Zbl
[15] Dzh. B. Di Mazi, Yu. M. Kabanov, V. I. Runggalder, “Khedzhirovanie optsionov na aktsiyu pri srednekvadratichnom kriterii i markovskikh volatilnostyakh”, Teoriya veroyatn. i ee primen., 39:1 (1994), 211–222 | MR | Zbl
[16] Yu. V. Bondarenko, “A probabilistic model for describing the evolution of financial indices”, Cybernet. Systems Anal., 36:5 (2000), 738–742 | DOI | MR | Zbl
[17] A. Di Crescenzo, F. Pellerey, “On prices' evolutions based on geometric telegrapher's process”, Appl. Stoch. Models Bus. Ind., 18:2 (2002), 171–184 | DOI | MR | Zbl
[18] N. Ratanov, “A jump telegraph model for option pricing”, Quant. Finance, 7:5 (2007), 575–583 | DOI | MR | Zbl
[19] N. Ratanov, A. Melnikov, “On Financial markets based on telegraph processes”, Stochastics, 80:2-3 (2008), 247–268 | DOI | MR | Zbl
[20] N. Ratanov, “Option pricing model based on a Markov-modulated diffusion with jumps”, Braz. J. Probab. Stat., 24:2 (2010), 413–431 | DOI | MR | Zbl
[21] O. López, N. Ratanov, “Option pricing driven by a telegraph process with random jumps”, J. Appl. Probab., 49:3 (2012), 838–849 | DOI | MR | Zbl
[22] L. R. Sotomayor, A. Cadenillas, “Classical and singular stochastic control for the optimal dividend policy when there is regime switching”, Insurance Math. Econom., 48 (2011), 344–354 | DOI | MR | Zbl
[23] J. Zhu, F. Chen, “Dividend optimization for regime-switching general diffusions”, Insurance Math. Econom., 53:2 (2013), 439–456 | DOI | MR | Zbl
[24] Z. Jiang, M. Pistorius, “Optimal dividend distribution under Markov regime switching”, Finance Stoch., 16:3 (2012), 449–476 | DOI | MR | Zbl
[25] J. Wei, R. Wang, H. Yang, “On the optimal dividend strategy in a regime-switching diffusion model”, Adv. in Appl. Probab., 44:3 (2012), 886–906 | DOI | MR | Zbl
[26] Z. Jiang, “Optimal dividend policy when cash reserves follow a jump-diffusion process under Markov-regime switching”, J. Appl. Probab., 52:1 (2015), 209–223 | DOI | MR | Zbl
[27] W. H. Fleming, R. W. Rishel, Deterministic and Stochastic Optimal Control, Springer-Verlag, 1975 | MR | Zbl
[28] W. Fleming, H. M. Soner, Controlled Markov Processes and Viscosity Solutions, Stoch. Model. Appl. Probab., 25, Springer, New York, 2006 | MR | Zbl