Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2021_109_1_a11, author = {A. V. Osipov}, title = {On the {Quasinormal} {Convergence} of {Functions}}, journal = {Matemati\v{c}eskie zametki}, pages = {129--134}, publisher = {mathdoc}, volume = {109}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a11/} }
A. V. Osipov. On the Quasinormal Convergence of Functions. Matematičeskie zametki, Tome 109 (2021) no. 1, pp. 129-134. http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a11/
[1] Á. Császár, M. Laczkovich, “Discrete and equal convergence”, Studia Sci. Math. Hungar., 10:3-4 (1975), 463–472 | MR | Zbl
[2] Z. Bukovská, “Thin sets in trigonometrical series and quasinormal convergence”, Math. Slovaca, 40:1 (1990), 53–62 | MR | Zbl
[3] H. K. Bari, Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR
[4] N. N. Kholschevnikova, “O predstavlenii nekotorykh funktsii v predpolozhenii aksiomy Martina”, Matem. zametki, 49:2 (1991), 151–154 | MR | Zbl
[5] L. Bukovský, I. Reclaw, M. Repický, “Spaces not distinguishing pointwise and quasinormal convergence of real functions”, Topology Appl, 41:1-2 (1991), 25–40 | DOI | MR | Zbl
[6] L. Bukovský, J. Haleš, “$QN$-spaces, $wQN$-spaces and covering properties”, Topology Appl., 154:4 (2007), 848–858 | DOI | MR | Zbl
[7] M. Sakai, “The sequence selection properties of $C_p(X)$”, Topology Appl., 154:3 (2007), 552–560 | DOI | MR | Zbl
[8] B. Tsaban, L. Zdomskyy, “Hereditarily Hurewicz spaces and Arhangel'skii sheaf amalgamations”, J. Eur. Math. Soc. (JEMS), 14:2 (2012), 353–372 | DOI | MR | Zbl
[9] A. V. Arkhangelskii, “Spektr chastot topologicheskogo prostranstva i klassifikatsiya prostranstv”, Dokl. AN SSSR, 206:2 (1972), 265–268 | MR | Zbl
[10] K. Kuratovskii, Topologiya, T. 2, M., 1969 | MR
[11] R. Engelking, Obschaya topologiya, Mir, M., 1986 | MR | Zbl
[12] I. Recław, “Metric spaces not distinguishing pointwise and quasinormal convergence of real functions”, Bull. Polish Acad. Sci. Math., 45 (1997), 287–289 | MR | Zbl