On the Quasinormal Convergence of Functions
Matematičeskie zametki, Tome 109 (2021) no. 1, pp. 129-134.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, it is proved that a topological space $X$ is a $QN$-space if and only if every image of the space $X$ under a Baire mapping to the Baire space $\mathbb{N}^{\mathbb{N}}$ is bounded. It is shown that there exists a compact $QN$-space such that its image under a Borel mapping to the Baire space $\mathbb{N}^{\mathbb{N}}$ is unbounded. The existence of such a space answers a question of L. Bukovský and J. Haleš. Generalizations of results of N. N. Kholshchevnikova concerning the representation of functions on subsets of the number line by trigonometric series are obtained.
Keywords: $QN$-space, $C_p$-theory, $\alpha_1$-property, Baire function
Mots-clés : quasinormal convergence, Baire space.
@article{MZM_2021_109_1_a11,
     author = {A. V. Osipov},
     title = {On the {Quasinormal} {Convergence} of {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {129--134},
     publisher = {mathdoc},
     volume = {109},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a11/}
}
TY  - JOUR
AU  - A. V. Osipov
TI  - On the Quasinormal Convergence of Functions
JO  - Matematičeskie zametki
PY  - 2021
SP  - 129
EP  - 134
VL  - 109
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a11/
LA  - ru
ID  - MZM_2021_109_1_a11
ER  - 
%0 Journal Article
%A A. V. Osipov
%T On the Quasinormal Convergence of Functions
%J Matematičeskie zametki
%D 2021
%P 129-134
%V 109
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a11/
%G ru
%F MZM_2021_109_1_a11
A. V. Osipov. On the Quasinormal Convergence of Functions. Matematičeskie zametki, Tome 109 (2021) no. 1, pp. 129-134. http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a11/

[1] Á. Császár, M. Laczkovich, “Discrete and equal convergence”, Studia Sci. Math. Hungar., 10:3-4 (1975), 463–472 | MR | Zbl

[2] Z. Bukovská, “Thin sets in trigonometrical series and quasinormal convergence”, Math. Slovaca, 40:1 (1990), 53–62 | MR | Zbl

[3] H. K. Bari, Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR

[4] N. N. Kholschevnikova, “O predstavlenii nekotorykh funktsii v predpolozhenii aksiomy Martina”, Matem. zametki, 49:2 (1991), 151–154 | MR | Zbl

[5] L. Bukovský, I. Reclaw, M. Repický, “Spaces not distinguishing pointwise and quasinormal convergence of real functions”, Topology Appl, 41:1-2 (1991), 25–40 | DOI | MR | Zbl

[6] L. Bukovský, J. Haleš, “$QN$-spaces, $wQN$-spaces and covering properties”, Topology Appl., 154:4 (2007), 848–858 | DOI | MR | Zbl

[7] M. Sakai, “The sequence selection properties of $C_p(X)$”, Topology Appl., 154:3 (2007), 552–560 | DOI | MR | Zbl

[8] B. Tsaban, L. Zdomskyy, “Hereditarily Hurewicz spaces and Arhangel'skii sheaf amalgamations”, J. Eur. Math. Soc. (JEMS), 14:2 (2012), 353–372 | DOI | MR | Zbl

[9] A. V. Arkhangelskii, “Spektr chastot topologicheskogo prostranstva i klassifikatsiya prostranstv”, Dokl. AN SSSR, 206:2 (1972), 265–268 | MR | Zbl

[10] K. Kuratovskii, Topologiya, T. 2, M., 1969 | MR

[11] R. Engelking, Obschaya topologiya, Mir, M., 1986 | MR | Zbl

[12] I. Recław, “Metric spaces not distinguishing pointwise and quasinormal convergence of real functions”, Bull. Polish Acad. Sci. Math., 45 (1997), 287–289 | MR | Zbl