An Elementary Analog of the Operator Method in Additive Combinatorics
Matematičeskie zametki, Tome 109 (2021) no. 1, pp. 117-128
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper provides an elementary proof of inequalities previously obtained by the operator method and having applications in additive combinatorics. The method of proof allows us to take a new look at a certain special case of Sidorenko's conjecture.
Keywords:
additive energy, operator method
Mots-clés : Sidorenko's conjecture.
Mots-clés : Sidorenko's conjecture.
@article{MZM_2021_109_1_a10,
author = {K. I. Olmezov},
title = {An {Elementary} {Analog} of the {Operator} {Method} in {Additive} {Combinatorics}},
journal = {Matemati\v{c}eskie zametki},
pages = {117--128},
publisher = {mathdoc},
volume = {109},
number = {1},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a10/}
}
K. I. Olmezov. An Elementary Analog of the Operator Method in Additive Combinatorics. Matematičeskie zametki, Tome 109 (2021) no. 1, pp. 117-128. http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a10/