An Elementary Analog of the Operator Method in Additive Combinatorics
Matematičeskie zametki, Tome 109 (2021) no. 1, pp. 117-128

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper provides an elementary proof of inequalities previously obtained by the operator method and having applications in additive combinatorics. The method of proof allows us to take a new look at a certain special case of Sidorenko's conjecture.
Keywords: additive energy, operator method
Mots-clés : Sidorenko's conjecture.
@article{MZM_2021_109_1_a10,
     author = {K. I. Olmezov},
     title = {An {Elementary} {Analog} of the {Operator} {Method} in {Additive} {Combinatorics}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {117--128},
     publisher = {mathdoc},
     volume = {109},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a10/}
}
TY  - JOUR
AU  - K. I. Olmezov
TI  - An Elementary Analog of the Operator Method in Additive Combinatorics
JO  - Matematičeskie zametki
PY  - 2021
SP  - 117
EP  - 128
VL  - 109
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a10/
LA  - ru
ID  - MZM_2021_109_1_a10
ER  - 
%0 Journal Article
%A K. I. Olmezov
%T An Elementary Analog of the Operator Method in Additive Combinatorics
%J Matematičeskie zametki
%D 2021
%P 117-128
%V 109
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a10/
%G ru
%F MZM_2021_109_1_a10
K. I. Olmezov. An Elementary Analog of the Operator Method in Additive Combinatorics. Matematičeskie zametki, Tome 109 (2021) no. 1, pp. 117-128. http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a10/