An Elementary Analog of the Operator Method in Additive Combinatorics
Matematičeskie zametki, Tome 109 (2021) no. 1, pp. 117-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper provides an elementary proof of inequalities previously obtained by the operator method and having applications in additive combinatorics. The method of proof allows us to take a new look at a certain special case of Sidorenko's conjecture.
Keywords: additive energy, operator method
Mots-clés : Sidorenko's conjecture.
@article{MZM_2021_109_1_a10,
     author = {K. I. Olmezov},
     title = {An {Elementary} {Analog} of the {Operator} {Method} in {Additive} {Combinatorics}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {117--128},
     publisher = {mathdoc},
     volume = {109},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a10/}
}
TY  - JOUR
AU  - K. I. Olmezov
TI  - An Elementary Analog of the Operator Method in Additive Combinatorics
JO  - Matematičeskie zametki
PY  - 2021
SP  - 117
EP  - 128
VL  - 109
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a10/
LA  - ru
ID  - MZM_2021_109_1_a10
ER  - 
%0 Journal Article
%A K. I. Olmezov
%T An Elementary Analog of the Operator Method in Additive Combinatorics
%J Matematičeskie zametki
%D 2021
%P 117-128
%V 109
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a10/
%G ru
%F MZM_2021_109_1_a10
K. I. Olmezov. An Elementary Analog of the Operator Method in Additive Combinatorics. Matematičeskie zametki, Tome 109 (2021) no. 1, pp. 117-128. http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a10/

[1] I. D. Shkredov, “Some applications of W. Rudin's inequality to problems of combinatorial number theory”, Unif. Distrib. Theory, 6:2 (2011), 95–116 | MR | Zbl

[2] S. V. Konyagin, “Ob otsenke $L_1$-normy odnoi eksponentsialnoi summy”, Teoriya priblizhenii funktsii i operatorov, Tezisy dokladov Mezhdunarodnoi konferentsii, posvyaschennoi 80-letiyu so dnya rozhdeniya S. B. Stechkina, Ekaterinburg, 2000, 88–89

[3] T. Schoen, I. D. Shkredov, “On sumsets of convex sets”, Combin. Probab. Comput., 20:5 (2011), 793–798 | DOI | MR | Zbl

[4] T. Schoen, I. D. Shkredov, “Higher moments of convolutions”, J. Number Theory, 133:5 (2013), 1693–1737 | DOI | MR | Zbl

[5] I. D. Shkredov, “Neskolko novykh rezultatov o starshikh energiyakh”, Tr. MMO, 74, no. 1, MTsNMO, M., 2013, 35–73 | MR | Zbl

[6] K. I. Olmezov, A. S. Semchankau, I. D. Shkredov, On Popular Sums and Differences of Sets with Small Products, 2019, arXiv: 1911.12005v1

[7] I. D. Shkredov, “O summakh mnozhestv Semeredi–Trottera”, Izbrannye voprosy matematiki i mekhaniki, Tr. MIAN, 289, MAIK «Nauka/Interperiodika», M., 2015, 318–327 | DOI

[8] B. Murphy, M. Rudnev, I. D. Shkredov, Y. N. Shteinikov, On the Few Products, Many Sums Problem, 2017, arXiv: 1712.00410v1

[9] I. D. Shkredov, “Analiz Fure v kombinatornoi teorii chisel”, UMN, 65:3 (393) (2010), 127–184 | DOI | MR | Zbl

[10] A. Sidorenko, “A correlation inequality for bipartite graphs”, Graphs Combin., 9:2 (1993), 201–204 | DOI | MR | Zbl

[11] H. Hatami, “Graph norms and Sidorenko's conjecture”, Israel J. Math., 175 (2010), 125–150 | DOI | MR | Zbl

[12] D. Conlon, J. Fox, B. Sudakov, “An approximate version of Sidorenko's conjecture”, Geom. Funct. Anal., 20:6 (2010), 1354–1366 | DOI | MR | Zbl