Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2021_109_1_a1, author = {A. Kh. Askarova and V. \`E. Ismailov}, title = {A {Chebyshev-Type} {Theorem} {Characterizing} {Best} {Approximation} of a {Continuous} {Function} by {Elements} of the {Sum} of {Two} {Algebras}}, journal = {Matemati\v{c}eskie zametki}, pages = {19--26}, publisher = {mathdoc}, volume = {109}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a1/} }
TY - JOUR AU - A. Kh. Askarova AU - V. È. Ismailov TI - A Chebyshev-Type Theorem Characterizing Best Approximation of a Continuous Function by Elements of the Sum of Two Algebras JO - Matematičeskie zametki PY - 2021 SP - 19 EP - 26 VL - 109 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a1/ LA - ru ID - MZM_2021_109_1_a1 ER -
%0 Journal Article %A A. Kh. Askarova %A V. È. Ismailov %T A Chebyshev-Type Theorem Characterizing Best Approximation of a Continuous Function by Elements of the Sum of Two Algebras %J Matematičeskie zametki %D 2021 %P 19-26 %V 109 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a1/ %G ru %F MZM_2021_109_1_a1
A. Kh. Askarova; V. È. Ismailov. A Chebyshev-Type Theorem Characterizing Best Approximation of a Continuous Function by Elements of the Sum of Two Algebras. Matematičeskie zametki, Tome 109 (2021) no. 1, pp. 19-26. http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a1/
[1] I. P. Natanson, Konstruktivnaya teoriya funktsii, GITTL, M.–L., 1949 | MR | Zbl
[2] R. C. Buck, “Alternation theorems for functions of several variables”, J. Approx. Theory, 1 (1968), 325–334 | DOI | MR | Zbl
[3] B. Brosowski, A. R. da Silva, “A general alternation theorem”, Approximation Theory (Memphis, TN, 1991), Lecture Notes in Pure and Appl. Math., 138, Dekker, New York, 1992, 137–150 | MR
[4] A. Kh. Asgarova, V. E. Ismailov, “Diliberto-Straus algorithm for the uniform approximation by a sum of two algebras”, Proc. Indian Acad. Sci. Math. Sci., 127:2 (2017), 361–374 | DOI | MR | Zbl
[5] A. Kh. Asgarova, V. E. Ismailov, “On the representation by sums of algebras of continuous functions”, C. R. Math. Acad. Sci. Paris, 355:9 (2017), 949–955 | DOI | MR | Zbl
[6] D. E. Marshall, A. G. O'Farrell, “Uniform approximation by real functions”, Fund. Math., 104:3 (1979), 203–211 | DOI | MR | Zbl
[7] D. E. Marshall, A. G. O'Farrell, “Approximation by a sum of two algebras. The lightning bolt principle”, J. Funct. Anal., 52:3 (1983), 353–368 | DOI | MR | Zbl
[8] Yu. P. Ofman, “O nailuchshem priblizhenii funktsii dvukh peremennykh funktsiyami vida $\varphi(x)+\psi(y)$”, Izv. AN SSSR. Ser. matem., 25:2 (1961), 239–252 | MR | Zbl
[9] V. E. Ismailov, “Characterization of an extremal sum of ridge functions”, J. Comput. Appl. Math., 205:1 (2007), 105–115 | DOI | MR | Zbl
[10] V. E. Ismailov, “On the approximation by compositions of fixed multivariate functions with univariate functions”, Studia Math., 183:2 (2007), 117–126 | DOI | MR | Zbl
[11] W. Rudin, Functional Analysis, McGraw-Hill, New York, 1991 | MR | Zbl
[12] S. Ya. Khavinson, “Chebyshevskaya teorema dlya priblizheniya funktsii dvukh peremennykh summami $\varphi(x)+\psi(y)$”, Izv. AN SSSR. Ser. matem., 33:3 (1969), 650–666 | MR | Zbl