A Chebyshev-Type Theorem Characterizing Best Approximation of a Continuous Function by Elements of the Sum of Two Algebras
Matematičeskie zametki, Tome 109 (2021) no. 1, pp. 19-26
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper, we consider the problem of uniform approximation of a continuous function defined on a compact metric space $X$ by elements of the sum of two algebras in the space of all continuous functions on $X$. We prove a Chebyshev-type theorem for characterization of best approximation.
Keywords:
function algebra, best approximation, lightning bolt, extremal lightning bolt.
@article{MZM_2021_109_1_a1,
author = {A. Kh. Askarova and V. \`E. Ismailov},
title = {A {Chebyshev-Type} {Theorem} {Characterizing} {Best} {Approximation} of a {Continuous} {Function} by {Elements} of the {Sum} of {Two} {Algebras}},
journal = {Matemati\v{c}eskie zametki},
pages = {19--26},
publisher = {mathdoc},
volume = {109},
number = {1},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a1/}
}
TY - JOUR AU - A. Kh. Askarova AU - V. È. Ismailov TI - A Chebyshev-Type Theorem Characterizing Best Approximation of a Continuous Function by Elements of the Sum of Two Algebras JO - Matematičeskie zametki PY - 2021 SP - 19 EP - 26 VL - 109 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a1/ LA - ru ID - MZM_2021_109_1_a1 ER -
%0 Journal Article %A A. Kh. Askarova %A V. È. Ismailov %T A Chebyshev-Type Theorem Characterizing Best Approximation of a Continuous Function by Elements of the Sum of Two Algebras %J Matematičeskie zametki %D 2021 %P 19-26 %V 109 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a1/ %G ru %F MZM_2021_109_1_a1
A. Kh. Askarova; V. È. Ismailov. A Chebyshev-Type Theorem Characterizing Best Approximation of a Continuous Function by Elements of the Sum of Two Algebras. Matematičeskie zametki, Tome 109 (2021) no. 1, pp. 19-26. http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a1/