Existence of Real Solutions of Nonlinear Equations without A Priori Normality Assumptions
Matematičeskie zametki, Tome 109 (2021) no. 1, pp. 3-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

The existence of real solutions of a nonlinear equation in a neighborhood of an abnormal (degenerate) point is studied. We prove that if the mapping describing this equation admits a $\lambda$-truncation that is regular in some direction, then there exist solutions for all right-hand sides in some neighborhood of the image of the abnormal point. Under the same assumption, we prove that there exist nontrivial smooth curves passing through the abnormal point and lying on the level set of the map in question.
Keywords: abnormal point, nonlinear equation, real solution, truncation, directional regularity.
@article{MZM_2021_109_1_a0,
     author = {A. V. Arutyunov},
     title = {Existence of {Real} {Solutions} of {Nonlinear} {Equations} without {A} {Priori} {Normality} {Assumptions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {3--18},
     publisher = {mathdoc},
     volume = {109},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a0/}
}
TY  - JOUR
AU  - A. V. Arutyunov
TI  - Existence of Real Solutions of Nonlinear Equations without A Priori Normality Assumptions
JO  - Matematičeskie zametki
PY  - 2021
SP  - 3
EP  - 18
VL  - 109
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a0/
LA  - ru
ID  - MZM_2021_109_1_a0
ER  - 
%0 Journal Article
%A A. V. Arutyunov
%T Existence of Real Solutions of Nonlinear Equations without A Priori Normality Assumptions
%J Matematičeskie zametki
%D 2021
%P 3-18
%V 109
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a0/
%G ru
%F MZM_2021_109_1_a0
A. V. Arutyunov. Existence of Real Solutions of Nonlinear Equations without A Priori Normality Assumptions. Matematičeskie zametki, Tome 109 (2021) no. 1, pp. 3-18. http://geodesic.mathdoc.fr/item/MZM_2021_109_1_a0/

[1] E. R. Avakov, “Teoremy ob otsenkakh v okrestnosti osoboi tochki otobrazheniya”, Matem. zametki, 47:5 (1990), 3–13 | MR | Zbl

[2] A. F. Izmailov, A. A. Tretyakov, Faktor-analiz nelinenykh otobrazhenii, Nauka, M., 1994

[3] A. V. Arutyunov, “Teorema o neyavnoi funktsii kak realizatsiya printsipa Lagranzha. Anormalnye tochki”, Matem. sb., 191:1 (2000), 3–26 | DOI | MR | Zbl

[4] A. V. Arutyunov, “Teorema o neyavnoi funktsii na konuse v okrestnosti anormalnoi tochki”, Matem. zametki, 78:4 (2005), 619–621 | DOI | MR | Zbl

[5] E. R. Avakov, A. V. Arutyunov, D. Yu. Karamzin, “Issledovanie gladkikh otobrazhenii v okrestnosti anormalnoi tochki”, Izv. RAN. Ser. matem., 78:2 (2014), 3–42 | DOI | MR | Zbl

[6] A. V. Arutyunov, “Gladkie anormalnye zadachi teorii ekstremuma i analiza”, UMN, 67:3(405) (2012), 3–62 | DOI | MR | Zbl

[7] V. V. Kozlov, “O veschestvennykh resheniyakh sistem uravnenii”, Funkts. analiz i ego pril., 51:4 (2017), 79–83 | DOI | MR | Zbl

[8] A. V. Arutyunov, “Issledovanie mnozhestv veschestvennykh reshenii nelineinykh uravnenii”, Izv. RAN. Ser. matem., 83:2 (2019), 5–20 | DOI | Zbl

[9] N. G. Chebotarev, “Mnogougolnik Nyutona i ego rol v sovremennom razvitii matematiki”, Isaak Nyuton, AN SSSR, 1943, 99–126; Собрание сочинений, Т. 3, АН СССР, 1950, 47–80

[10] M. M. Vainberg, V. A. Trenogin, Teoriya vetvleniya reshenii nelineinykh uravnenii, Nauka, M., 1969 | MR | Zbl

[11] A. D. Bryuno, Stepennaya geometriya v algebraicheskikh i differentsialnykh uravneniyakh, M., Nauka, 1998 | MR | Zbl

[12] A. D. Bryuno, “O parametrizatsii algebraicheskoi krivoi”, Matem. zametki, 106:6 (2019), 837–847 | DOI | Zbl

[13] E. R. Avakov, G. G. Magaril-Ilyaev, “Teorema o neyavnoi funktsii dlya vklyuchenii, zadavaemykh blizkimi otobrazheniyami”, Matem. zametki, 103:4 (2018), 483–489 | DOI | Zbl

[14] A. D. Ioffe, V. M. Tikhomirov, Teoriya ekstremalnykh zadach, Nelineinyi analiz i ego prilozheniya, Nauka, M., 1974 | MR | Zbl

[15] A. V. Arutyunov, A. F. Izmailov, “Tangent vectors to a zero set at abnormal points”, J. Math. Anal. Appl., 289 (2004), 66–76 | DOI | MR | Zbl