On the Analytic and Geometric Properties of Mappings in the Theory of $\mathscr Q_{q,p}$-Homeomorphisms
Matematičeskie zametki, Tome 108 (2020) no. 6, pp. 925-929.

Voir la notice de l'article provenant de la source Math-Net.Ru

Mots-clés : quasiconformal analysis
Keywords: Sobolev space, capacity of condenser, regularity of mapping.
@article{MZM_2020_108_6_a9,
     author = {S. K. Vodopyanov},
     title = {On the {Analytic} and {Geometric} {Properties} of {Mappings} in the {Theory} of $\mathscr Q_{q,p}${-Homeomorphisms}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {925--929},
     publisher = {mathdoc},
     volume = {108},
     number = {6},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_6_a9/}
}
TY  - JOUR
AU  - S. K. Vodopyanov
TI  - On the Analytic and Geometric Properties of Mappings in the Theory of $\mathscr Q_{q,p}$-Homeomorphisms
JO  - Matematičeskie zametki
PY  - 2020
SP  - 925
EP  - 929
VL  - 108
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_108_6_a9/
LA  - ru
ID  - MZM_2020_108_6_a9
ER  - 
%0 Journal Article
%A S. K. Vodopyanov
%T On the Analytic and Geometric Properties of Mappings in the Theory of $\mathscr Q_{q,p}$-Homeomorphisms
%J Matematičeskie zametki
%D 2020
%P 925-929
%V 108
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_108_6_a9/
%G ru
%F MZM_2020_108_6_a9
S. K. Vodopyanov. On the Analytic and Geometric Properties of Mappings in the Theory of $\mathscr Q_{q,p}$-Homeomorphisms. Matematičeskie zametki, Tome 108 (2020) no. 6, pp. 925-929. http://geodesic.mathdoc.fr/item/MZM_2020_108_6_a9/

[1] S. K. Vodopyanov, “Operatory kompozitsii vesovykh prostranstva Soboleva i teoriya $\mathscr Q_p$-gomeomorfizmov”, Dokl. AN, 2020 (to appear)

[2] S. K. Vodopyanov, A. O, Tomilov, “Funktsionalnye i analitcheskie svoistva odnogo klassa otobrazhenii kvazikonformnogo analiza”, Izv. RAN. Ser. matem., 2021 (to appear) | Zbl

[3] G. D. Mostow, Inst. Hautes Études Sci. Publ. Math., 34:1 (1968), 53–104 | DOI | MR | Zbl

[4] V. I. Kruglikov, Matem. sb., 130 (172):2 (6) (1986), 185–206 | MR | Zbl

[5] S. K. Vodopyanov, Formula Teilora i funktsionalnye prostranstva, Uchebnoe posobie, NGU, Novosibirsk, 1988

[6] A. D. Ukhlov, Sib. matem. zhurn., 34:1 (1993), 185–192 | MR | Zbl

[7] S. K. Vodopyanov, A. D. Ukhlov, Sib. matem. zhurn., 39:4 (1998), 776–795 | MR | Zbl

[8] R. R. Salimov, Izv. RAN. Ser. matem., 72:5 (2008), 141–148 | DOI | MR | Zbl

[9] O. Martio, V. Ryazanov, U. Srebro, E. Yakubov, Moduli in Modern Mapping Theory, Springer, New York, 2008 | MR

[10] S. Hencl, P. Koskela, Arch. Ration. Mech. Anal., 180:1 (2006), 75–95 | DOI | MR | Zbl

[11] J. Onninen, Calc. Var. Partial Differential Equations, 26:3 (2006), 331–341 | DOI | MR | Zbl

[12] D. Menchoff, Math. Ann., 105:1 (1931), 75–85 | DOI | MR

[13] F. W. Gehring, O. Lehto, Ann. Acad. Sci. Fenn. Ser. A I, 272 (1959), 1–9 | MR

[14] O. Martio, S. Rickman, J. Väisälä, Ann. Acad. Sci. Fenn. Ser. A I, 448 (1969), 1–40 | MR

[15] V. Tengvall, Calc. Var. Partial Differential Equations, 51:1-2 (2014), 381–399 | DOI | MR | Zbl

[16] S. K. Vodopyanov, Matem. sb., 203:10 (2012), 3–32 | DOI | MR | Zbl