Nonexistence of Global Weak Solutions for Evolution Equations with Fractional Laplacian
Matematičeskie zametki, Tome 108 (2020) no. 6, pp. 911-919.

Voir la notice de l'article provenant de la source Math-Net.Ru

A nonlocal nonlinear parabolic equation with fractional Laplacian is considered. By means of the method of test functions, the nonexistence of nontrivial global weak solutions is demonstrated. Simultaneously, the nonexistence of nontrivial weak solutions for the corresponding elliptic case is established.
Mots-clés : parabolic equation
Keywords: fractional Laplacian, blow-up of solutions.
@article{MZM_2020_108_6_a7,
     author = {A. Z. Fino and E. I. Galakhov and O. A. Salieva},
     title = {Nonexistence of {Global} {Weak} {Solutions} for {Evolution} {Equations} with {Fractional} {Laplacian}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {911--919},
     publisher = {mathdoc},
     volume = {108},
     number = {6},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_6_a7/}
}
TY  - JOUR
AU  - A. Z. Fino
AU  - E. I. Galakhov
AU  - O. A. Salieva
TI  - Nonexistence of Global Weak Solutions for Evolution Equations with Fractional Laplacian
JO  - Matematičeskie zametki
PY  - 2020
SP  - 911
EP  - 919
VL  - 108
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_108_6_a7/
LA  - ru
ID  - MZM_2020_108_6_a7
ER  - 
%0 Journal Article
%A A. Z. Fino
%A E. I. Galakhov
%A O. A. Salieva
%T Nonexistence of Global Weak Solutions for Evolution Equations with Fractional Laplacian
%J Matematičeskie zametki
%D 2020
%P 911-919
%V 108
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_108_6_a7/
%G ru
%F MZM_2020_108_6_a7
A. Z. Fino; E. I. Galakhov; O. A. Salieva. Nonexistence of Global Weak Solutions for Evolution Equations with Fractional Laplacian. Matematičeskie zametki, Tome 108 (2020) no. 6, pp. 911-919. http://geodesic.mathdoc.fr/item/MZM_2020_108_6_a7/

[1] Q. S. Zhang, “A blow up result for a nonlinear wave equation with damping: the critical case”, C. R. Acad. Sci. Paris Sér. I Math., 333:2 (2001), 109–114 | DOI | MR | Zbl

[2] E. Mitidieri, S. I. Pokhozhaev, “Apriornye otsenki i otsutstvie reshenii nelineinykh uravnenii i neravenstv v chastnykh proizvodnykh”, Tr. MIAN, 234, Nauka, MAIK «Nauka/Interperiodika», M., 2001, 3–383 | MR | Zbl

[3] S. I. Pokhozhaev, “Suschestvenno nelineinye emkosti, indutsirovannye differentsialnymi operatorami”, Dokl. AN, 56 (1997), 924–926 | MR | Zbl

[4] A. Z. Fino, M. Kirane, “Qualitative properties of solutions to a time-space fractional evolution equation”, Quart. Appl. Math., 70 (2012), 133–157 | DOI | MR | Zbl

[5] M. Gidda, M. Kirane, “Kritichnost dlya nekotorykh evolyutsionnykh uravnenii”, Differents. uravneniya, 37:4 (2001), 511–520 | MR

[6] M. Kirane, Y. Laskri, N.-E. Tatar, “Critical exponents of Fujita type for certain evolution equations and systems with spatio-temporal fractional derivatives”, J. Math. Anal. Appl., 312:2 (2005), 488–501 | DOI | MR | Zbl

[7] P. Baras, R. Kersner, “Local and global solvability of a class of semilinear parabolic equations”, J. Differential Equations, 68:2 (1987), 238–252 | DOI | MR | Zbl

[8] A. Carbotti, S. Dipierro, E. Valdinoci, Local Density of Solutions of Time and Space Fractional Equations, 2018, arXiv: 1810.08448

[9] S. Dipierro, H.-C. Grunau, “Boggio's formula for fractional polyharmonic Dirichlet problems”, Ann. Mat. Pura Appl. (4), 196:4 (2017), 1327–1344 | DOI | MR | Zbl

[10] S. Dipierro, O. Savin, E. Valdinoci, “All functions are locally s-harmonic up to a small error”, J. Eur. Math. Soc. (JEMS), 19:4 (2017), 957–966 | DOI | MR | Zbl

[11] N. V. Krylov, On the Paper "All Functions are Locally $s$-Harmonic up to a Small Error" by Dipierro, Savin, and Valdinoci, 2018, arXiv: 1810.07648

[12] Z. Dahmani, F. Karami, S. Kerbal, “Nonexistence of positive solutions to nonlinear nonlocal elliptic systems”, J. Math. Anal. Appl., 346:1 (2008), 22–29 | DOI | MR | Zbl

[13] E. Galakhov, O. Salieva, “Nonexistence of solutions of some inequalities with gradient nonlinearities and fractional Laplacian”, Proceedings of EQUADIFF 2017, SPEKTRUM STU Publishing, Bratislava, 2017, 157–162

[14] E. I. Galakhov, O. A. Salieva, “Uniqueness of the trivial solution of some inequalities with fractional Laplacian”, Electron. J. Qual. Theory Differ. Equ., 2019:1 (2019), 1–8 | DOI | MR | Zbl

[15] O. A. Salieva, “Otsutstvie reshenii nekotorykh nelineinykh neravenstv s drobnymi stepenyami operatora Laplasa”, Matem. zametki, 101:4 (2017), 588–593 | DOI | MR | Zbl

[16] T. A. Dao, M. Reissig, A Blow-Up Result for Semi-Linear Structurally Damped $\sigma$-Evolution Equations, 2019, arXiv: 1909.01181v1

[17] N. Ju, “The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equations”, Comm. Math. Phys., 255:1 (2005), 161–181 | MR | Zbl

[18] K. Bogdan, T. Byczkowski, “Potential theory for the $\alpha$-stable Schrödinger operator on bounded Lipschitz domains”, Studia Math., 133:1 (1999), 53–92 | DOI | MR | Zbl