Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2020_108_6_a7, author = {A. Z. Fino and E. I. Galakhov and O. A. Salieva}, title = {Nonexistence of {Global} {Weak} {Solutions} for {Evolution} {Equations} with {Fractional} {Laplacian}}, journal = {Matemati\v{c}eskie zametki}, pages = {911--919}, publisher = {mathdoc}, volume = {108}, number = {6}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_6_a7/} }
TY - JOUR AU - A. Z. Fino AU - E. I. Galakhov AU - O. A. Salieva TI - Nonexistence of Global Weak Solutions for Evolution Equations with Fractional Laplacian JO - Matematičeskie zametki PY - 2020 SP - 911 EP - 919 VL - 108 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2020_108_6_a7/ LA - ru ID - MZM_2020_108_6_a7 ER -
%0 Journal Article %A A. Z. Fino %A E. I. Galakhov %A O. A. Salieva %T Nonexistence of Global Weak Solutions for Evolution Equations with Fractional Laplacian %J Matematičeskie zametki %D 2020 %P 911-919 %V 108 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2020_108_6_a7/ %G ru %F MZM_2020_108_6_a7
A. Z. Fino; E. I. Galakhov; O. A. Salieva. Nonexistence of Global Weak Solutions for Evolution Equations with Fractional Laplacian. Matematičeskie zametki, Tome 108 (2020) no. 6, pp. 911-919. http://geodesic.mathdoc.fr/item/MZM_2020_108_6_a7/
[1] Q. S. Zhang, “A blow up result for a nonlinear wave equation with damping: the critical case”, C. R. Acad. Sci. Paris Sér. I Math., 333:2 (2001), 109–114 | DOI | MR | Zbl
[2] E. Mitidieri, S. I. Pokhozhaev, “Apriornye otsenki i otsutstvie reshenii nelineinykh uravnenii i neravenstv v chastnykh proizvodnykh”, Tr. MIAN, 234, Nauka, MAIK «Nauka/Interperiodika», M., 2001, 3–383 | MR | Zbl
[3] S. I. Pokhozhaev, “Suschestvenno nelineinye emkosti, indutsirovannye differentsialnymi operatorami”, Dokl. AN, 56 (1997), 924–926 | MR | Zbl
[4] A. Z. Fino, M. Kirane, “Qualitative properties of solutions to a time-space fractional evolution equation”, Quart. Appl. Math., 70 (2012), 133–157 | DOI | MR | Zbl
[5] M. Gidda, M. Kirane, “Kritichnost dlya nekotorykh evolyutsionnykh uravnenii”, Differents. uravneniya, 37:4 (2001), 511–520 | MR
[6] M. Kirane, Y. Laskri, N.-E. Tatar, “Critical exponents of Fujita type for certain evolution equations and systems with spatio-temporal fractional derivatives”, J. Math. Anal. Appl., 312:2 (2005), 488–501 | DOI | MR | Zbl
[7] P. Baras, R. Kersner, “Local and global solvability of a class of semilinear parabolic equations”, J. Differential Equations, 68:2 (1987), 238–252 | DOI | MR | Zbl
[8] A. Carbotti, S. Dipierro, E. Valdinoci, Local Density of Solutions of Time and Space Fractional Equations, 2018, arXiv: 1810.08448
[9] S. Dipierro, H.-C. Grunau, “Boggio's formula for fractional polyharmonic Dirichlet problems”, Ann. Mat. Pura Appl. (4), 196:4 (2017), 1327–1344 | DOI | MR | Zbl
[10] S. Dipierro, O. Savin, E. Valdinoci, “All functions are locally s-harmonic up to a small error”, J. Eur. Math. Soc. (JEMS), 19:4 (2017), 957–966 | DOI | MR | Zbl
[11] N. V. Krylov, On the Paper "All Functions are Locally $s$-Harmonic up to a Small Error" by Dipierro, Savin, and Valdinoci, 2018, arXiv: 1810.07648
[12] Z. Dahmani, F. Karami, S. Kerbal, “Nonexistence of positive solutions to nonlinear nonlocal elliptic systems”, J. Math. Anal. Appl., 346:1 (2008), 22–29 | DOI | MR | Zbl
[13] E. Galakhov, O. Salieva, “Nonexistence of solutions of some inequalities with gradient nonlinearities and fractional Laplacian”, Proceedings of EQUADIFF 2017, SPEKTRUM STU Publishing, Bratislava, 2017, 157–162
[14] E. I. Galakhov, O. A. Salieva, “Uniqueness of the trivial solution of some inequalities with fractional Laplacian”, Electron. J. Qual. Theory Differ. Equ., 2019:1 (2019), 1–8 | DOI | MR | Zbl
[15] O. A. Salieva, “Otsutstvie reshenii nekotorykh nelineinykh neravenstv s drobnymi stepenyami operatora Laplasa”, Matem. zametki, 101:4 (2017), 588–593 | DOI | MR | Zbl
[16] T. A. Dao, M. Reissig, A Blow-Up Result for Semi-Linear Structurally Damped $\sigma$-Evolution Equations, 2019, arXiv: 1909.01181v1
[17] N. Ju, “The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equations”, Comm. Math. Phys., 255:1 (2005), 161–181 | MR | Zbl
[18] K. Bogdan, T. Byczkowski, “Potential theory for the $\alpha$-stable Schrödinger operator on bounded Lipschitz domains”, Studia Math., 133:1 (1999), 53–92 | DOI | MR | Zbl