Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2020_108_6_a6, author = {Yu. L. Sachkov}, title = {Coadjoint {Orbits} and {Time-Optimal} {Problems} for {Step-}$2$ {Free} {Nilpotent} {Lie} {Groups}}, journal = {Matemati\v{c}eskie zametki}, pages = {899--910}, publisher = {mathdoc}, volume = {108}, number = {6}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_6_a6/} }
Yu. L. Sachkov. Coadjoint Orbits and Time-Optimal Problems for Step-$2$ Free Nilpotent Lie Groups. Matematičeskie zametki, Tome 108 (2020) no. 6, pp. 899-910. http://geodesic.mathdoc.fr/item/MZM_2020_108_6_a6/
[1] R. Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl
[2] A. A. Agrachev, Yu. L. Sachkov, Geometricheskaya teoriya upravleniya, Fizmatlit, M., 2005
[3] A. Agrachev, D. Barilari, U. Boscain, A Comprehensive Introduction to Sub-Riemannian Geometry, Cambridge Univ. Press, Cambridge, 2019 | MR | Zbl
[4] V. N. Berestovskii, “Odnorodnye mnogoobraziya s vnutrennei metrikoi II”, Sib. matem. zhurn., 30:2 (1989), 14–28 | MR
[5] V. N. Berestovskii, “Geodezicheskie negolonomnykh levoinvariantnykh vnutrennikh metrik na gruppe Geizenberga i izoperimetriksy ploskosti Minkovskogo”, Sib. matem. zhurn., 35:1 (1994), 3–11 | MR | Zbl
[6] D. Barilari, U. Boscain, E. Le Donne, M. Sigalotti, “Sub-Finsler structures from the time-optimal control viewpoint for some nilpotent distributions”, J. Dyn. Control Syst., 23:3 (2017), 547–575 | DOI | MR | Zbl
[7] A. A. Ardentov, E. Le Donne, Yu. L. Sachkov, “Sub-Finsler Geodesics on the Cartan Group”, Regul. Chaotic Dyn., 24:1 (2019), 36–60 | DOI | MR | Zbl
[8] E. Le Donne, G. Speight, “Lusin approximation for horizontal curves in step 2 Carnot groups”, Calc. Var. Partial Differential Equations, 55:5 (2016), Art. 111 | MR
[9] E. Le Donne, S. Rigot, “Remarks about Besicovitch covering property in Carnot groups of step 3 and higher”, Proc. Amer. Math. Soc., 144:5 (2016), 2003–2013 | DOI | MR | Zbl
[10] Yu. Sachkov, “Periodic controls in step 2 strictly convex sub-Finsler problems”, Regul. Chaotic Dyn., 25:1 (2020), 33–39 | DOI | MR | Zbl
[11] H. Busemann, “The isoperimetric problem in the Minkowski plane”, Amer. J. Math., 69 (1947), 863–871 | MR | Zbl
[12] R. W. Brockett, “Nonlinear control theory and differential geometry”, Proceedings of the International Congress of Mathematicians, PWN, Warszawa, 1983, 1357–1368 | MR
[13] O. Myasnichenko, “Nilpotent $(3,6)$ sub-Riemannian problem”, J. Dynam. Control Systems, 8:4 (2002), 573–597 | DOI | MR | Zbl
[14] L. Rizzi, U. Serres, “On the cut locus of free, step two Carnot groups”, Proc. Amer. Math. Soc., 145:12 (2017), 5341–5357 | DOI | MR | Zbl
[15] A. A. Kirillov, Lectures on the Orbit Method, Amer. Math. Soc., Providence, RI, 2004 | MR | Zbl
[16] R. T. Rockafellar, Convex Analysis, Princeton Univ. Press, Princeton, NJ, 1970 | MR | Zbl
[17] V. Jurdjevic, Geometric Control Theory, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl
[18] E. Hakavuori, Infinite Geodesics and Isometric Embeddings in Carnot Groups of Step 2, 2019, arXiv: 1905.03214
[19] Yu. L. Sachkov, “Eksponentsialnoe otobrazhenie v obobschennoi zadache Didony”, Matem. sb., 194:9 (2003), 63–90 | DOI | MR | Zbl
[20] I. A. Bizyaev, A. V. Borisov, A. A. Kilin, I. S. Mamaev, “Integrability and nonintegrability of sub-Riemannian geodesic flows on Carnot groups”, Regul. Chaotic Dyn., 21:6 (2016), 759–774 | DOI | MR | Zbl
[21] L. V. Lokutsievskii, Yu. L. Sachkov, “Ob integriruemosti po Liuvillyu subrimanovykh zadach na gruppakh Karno glubiny 4 i bolshe”, Matem. sb., 209:5 (2018), 74–119 | DOI | MR
[22] A. V. Podobryaev, “Casimir functions of free nilpotent Lie groups of steps three and four”, J. Dyn. Control Syst. (to appear); 2020, arXiv: 2006.00224 | Zbl