Mean Convergence of Periodic Pseudotrajectories and Invariant Measures of Dynamical Systems
Matematičeskie zametki, Tome 108 (2020) no. 6, pp. 882-898.

Voir la notice de l'article provenant de la source Math-Net.Ru

A discrete dynamical system generated by a homeomorphism of a compact manifold is considered. A sequence $\omega_n$ of periodic $\varepsilon_n$-trajectories converges in the mean as $\varepsilon_n\to 0$ if, for any continuous function $\varphi$, the mean values on the period $\overline\varphi(\omega_n)$ converge as $n\to\infty$. It is shown that $\omega_n$ converges in the mean if and only if there exists an invariant measure $\mu$ such that $\overline\varphi(\omega_n)$ converges to $\int\varphi\,d\mu$. If a sequence $\omega_n$ converges in the mean and converges uniformly to a trajectory $\operatorname{Tr}$, then the trajectory $\operatorname{Tr}$ is recurrent and its closure is a minimal strictly ergodic set.
Keywords: pseudotrajectory, invariant measure, symbolic image, minimal set, ergodicity.
@article{MZM_2020_108_6_a5,
     author = {G. S. Osipenko},
     title = {Mean {Convergence} of {Periodic} {Pseudotrajectories} and {Invariant} {Measures} of {Dynamical} {Systems}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {882--898},
     publisher = {mathdoc},
     volume = {108},
     number = {6},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_6_a5/}
}
TY  - JOUR
AU  - G. S. Osipenko
TI  - Mean Convergence of Periodic Pseudotrajectories and Invariant Measures of Dynamical Systems
JO  - Matematičeskie zametki
PY  - 2020
SP  - 882
EP  - 898
VL  - 108
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_108_6_a5/
LA  - ru
ID  - MZM_2020_108_6_a5
ER  - 
%0 Journal Article
%A G. S. Osipenko
%T Mean Convergence of Periodic Pseudotrajectories and Invariant Measures of Dynamical Systems
%J Matematičeskie zametki
%D 2020
%P 882-898
%V 108
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_108_6_a5/
%G ru
%F MZM_2020_108_6_a5
G. S. Osipenko. Mean Convergence of Periodic Pseudotrajectories and Invariant Measures of Dynamical Systems. Matematičeskie zametki, Tome 108 (2020) no. 6, pp. 882-898. http://geodesic.mathdoc.fr/item/MZM_2020_108_6_a5/

[1] M. Shub, Stabilité globale de systems dynamiques, Asterisque, 56, Soc. Math. France, Paris, 1978 | MR

[2] G. Osipenko, Dynamical Systems, Graphs, and Algorithms, Lectures Notes in Math., 1889, Springer, Berlin, 2007 | DOI | MR | Zbl

[3] A. Katok, B. Hasselblat, Introduction to the Modern Theory of Dynamical Systems, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[4] G. S. Osipenko, “Spektr usredneniya funktsii nad psevdotraektoriyami dinamicheskoi sistemy”, Matem. sb., 209:8 (2018), 114–137 | DOI | Zbl

[5] V. V. Nemytskii, V. V. Stepanov, Kachestvennaya teoriya differentsialnykh uravnenii, OGIZ, M.–L., 1949 | MR

[6] V. M. Alekseev, Simvolicheskaya dinamika. Odinnadtsataya matematicheskaya shkola, Izd-vo in-ta matem. AN USSR, Kiev, 1976

[7] D. Lind, B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[8] C. Robinson, Dynamical Systems. Stability, Symbolic Dynamics and Chaos, CRC Press, Boca Raton, FL, 1995 | MR | Zbl

[9] C. S. Hsu, Cell-to-Cell Mapping. A Method of Global Analysis for Nonlinear Systems, Springer, New York, 1987 | MR | Zbl

[10] G. S. Osipenko, “O simvolicheskom obraze dinamicheskoi sistemy”, Kraevye zadachi, Perm, 1983, 101–105 | Zbl

[11] G. Osipenko, “Symbolic images and invariant measures of dynamical systems”, Ergodic Theory Dynam. Systems, 30:4 (2010), 1217–1237 | DOI | MR

[12] G. S. Osipenko, “Pokazateli Lyapunova i invariantnye mery na proektivnom rassloenii”, Matem. zametki, 101:4 (2017), 549–561 | DOI | MR | Zbl

[13] D. Okstobi, “Ergodicheskie mnozhestva”, UMN, 8:3 (55) (1953), 75–97 | MR