Inequalities for Positive Definite Functions
Matematičeskie zametki, Tome 108 (2020) no. 6, pp. 823-836.

Voir la notice de l'article provenant de la source Math-Net.Ru

Positive definite kernels and functions are considered. The key tool in the paper is the well-known main inequality for such kernels, namely, the Cauchy–Bunyakovskii inequality for the special inner product generated by a given positive definite kernel. It is shown that Ingham's inequality (and, in particular, Hilbert's inequality) is, essentially, the main inequality for the positive definite function $\sin(\pi x)/x$ on $\mathbb{R}$ and for a system of integer points. Using the main inequality, we prove new inequalities of Krein–Gorin type and Ingham's inequality.
Keywords: positive definite kernels and functions, Ingham's inequality, Hilbert's inequality, Krein's inequality, Weil's inequality, Gorin's inequality.
@article{MZM_2020_108_6_a1,
     author = {V. P. Zastavnyi},
     title = {Inequalities for {Positive} {Definite} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {823--836},
     publisher = {mathdoc},
     volume = {108},
     number = {6},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_6_a1/}
}
TY  - JOUR
AU  - V. P. Zastavnyi
TI  - Inequalities for Positive Definite Functions
JO  - Matematičeskie zametki
PY  - 2020
SP  - 823
EP  - 836
VL  - 108
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_108_6_a1/
LA  - ru
ID  - MZM_2020_108_6_a1
ER  - 
%0 Journal Article
%A V. P. Zastavnyi
%T Inequalities for Positive Definite Functions
%J Matematičeskie zametki
%D 2020
%P 823-836
%V 108
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_108_6_a1/
%G ru
%F MZM_2020_108_6_a1
V. P. Zastavnyi. Inequalities for Positive Definite Functions. Matematičeskie zametki, Tome 108 (2020) no. 6, pp. 823-836. http://geodesic.mathdoc.fr/item/MZM_2020_108_6_a1/

[1] N. N. Vakhaniya, V. I. Tarieladze, S. A. Chobanyan, Veroyatnostnye raspredeleniya v banakhovykh prostranstvakh, Nauka, M., 1985 | MR

[2] M. G. Krein, “Ob odnom koltse funktsii, opredelennykh na topologicheskoi gruppe”, Dokl. AN SSSR, 29:4 (1940), 275–280 | MR

[3] M. G. Krein, “O probleme prodolzheniya ermitovo polozhitelnykh nepreryvnykh funktsii”, Dokl. AN SSSR, 26:1 (1940), 17–22 | MR

[4] E. A. Gorin, “Nekotorye neravenstva dlya polozhitelno opredelennykh funktsii”, Funkts. analiz i ego pril., 49:4 (2015), 76–78 | DOI | Zbl

[5] E. A. Gorin, “Universal symbols on locally compact Abelian groups”, Bull. Polish Acad. Sci. Math., 51:2 (2003), 199–204 | MR | Zbl

[6] E. A. Gorin, “Polozhitelno opredelennye funktsii kak instrument matematicheskogo analiza”, Fundament. i prikl. matem., 17:7 (2012), 67–95

[7] A. B. Pevnyi, S. M. Sitnik, “Obobscheniya neravenstv M. G. Kreina, E. A. Gorina i Yu. V. Linnika dlya polozhitelno opredelennykh funktsii na mnogotochechnyi sluchai”, Sib. elektron. matem. izv., 16 (2019), 263–270 | DOI | MR | Zbl

[8] Z. Sasvári, Positive Definite and Definitizable Functions, Akademie Verlag, Berlin, 1994 | MR | Zbl

[9] Z. Sasvári, Multivariate Characteristic and Correlation Functions, Walter de Gruyter, Berlin, 2013 | MR

[10] N. Aronshain, “Teoriya vosproizvodyaschikh yader”, Matematika, 7:2 (1963), 67–130 | MR | Zbl

[11] R. M. Trigub, E. S. Belinsky, Fourier Analysis and Approximation of Functions, Kluwer Acad. Publ., Dordrecht, 2004 | MR | Zbl

[12] V. P. Zastavnyi, “On positive definiteness of some functions”, J. Multivariate Anal., 73 (2000), 55–81 | DOI | MR | Zbl

[13] A. E. Ingham, “A note on Hilbert's inequality”, J. London Math. Soc., 11:3 (1936), 237–240 | DOI | MR

[14] G. G. Khardi, Dzh. E. Littlvud, G. Polia, Neravenstva, IL, M., 1948 | MR | Zbl

[15] A. Veil, Integrirovanie v topologicheskikh gruppakh i ego primenenie, IL, M., 1950 | Zbl