Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2020_108_5_a9, author = {T. I. Lipina}, title = {An {Algorithm} for {Recognizing} the {Spherical} {Transitivity} of an {Initial} {Binary} {Automaton}}, journal = {Matemati\v{c}eskie zametki}, pages = {757--763}, publisher = {mathdoc}, volume = {108}, number = {5}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a9/} }
T. I. Lipina. An Algorithm for Recognizing the Spherical Transitivity of an Initial Binary Automaton. Matematičeskie zametki, Tome 108 (2020) no. 5, pp. 757-763. http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a9/
[1] L. Bartholdi, R. I. Grigorchuk, Z. Šuniḱ, “Branch groups”, Handb. Algebr., 3, North-Holland, Amsterdam, 2003, 989–1112 | MR
[2] R. I. Grigorchuk, V. V. Nekrashevich, V. I. Suschanskii, “Avtomaty, dinamicheskie sistemy i gruppy”, Dinamicheskie sistemy, avtomaty i beskonechnye gruppy, Tr. MIAN, 231, Nauka, MAIK «Nauka/Interperiodika», M., 2000, 134–214 | MR | Zbl
[3] A. G. Lunts, “$p$-adicheskii apparat teorii konechnykh avtomatov”, Probl. kibernet., 14 (1965), 17–30 | Zbl
[4] V. Anashin, “The non-Archimedean theory of discrete systems”, Math. Comput. Sci., 6:4 (2012), 375–393 | MR | Zbl
[5] V. Anashin, A. Khrennikov, E. Yurova, “T-functions revisited: new criteria for bijectivity/transitivity”, Des. Codes Cryptogr., 71:3 (2014), 383–407 | MR | Zbl
[6] V. Anashin, “Automata finiteness criterion in terms of van der Put series of automata functions”, p-Adic Numbers Ultrametric Anal. Appl., 4:2 (2012), 151–160 | MR | Zbl
[7] K. Mahler, $p$-Adic Numbers and Their Functions, Cambridge Univ. Press, Cambridge, 1981 | MR | Zbl
[8] V. Anashin, A. Khrennikov, Applied Algebraic Dynamics, Walter de Gruyter, Berlin, 2009 | MR | Zbl
[9] V. S. Anashin, A. Yu. Khrennikov, E. I. Yurova, “Kharakterizatsiya ergodicheskikh $p$-adicheskikh dinamicheskikh sistem v terminakh bazisa van der Puta”, Dokl. An, 438:2 (2011), 151–153 | MR | Zbl