Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2020_108_5_a7, author = {A. A. Kuznetsova}, title = {Finite {3-Subgroups} in the {Cremona} {Group} of {Rank} 3}, journal = {Matemati\v{c}eskie zametki}, pages = {725--749}, publisher = {mathdoc}, volume = {108}, number = {5}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a7/} }
A. A. Kuznetsova. Finite 3-Subgroups in the Cremona Group of Rank 3. Matematičeskie zametki, Tome 108 (2020) no. 5, pp. 725-749. http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a7/
[1] I. V. Dolgachev, V. A. Iskovskikh, “Finite subgroups of the plane Cremona group”, Algebra, Arithmetic, and Geometry, Vol. I, Progr. Math., 269, Boston, MA, Birkhäuser Boston, 2009, 443–548 | MR | Zbl
[2] A. Beauville, “$p$-elementary subgroups of the Cremona group”, J. Algebra, 314:2 (2007), 553–564 | MR | Zbl
[3] Yu. Prokhorov, “2-elementary subgroups of the space Cremona group”, Automorphisms in Birational and Affine Geometry, Springer Proc. Math. Stat., 79, Springer, Cham, 2014, 215–229 | MR | Zbl
[4] Yu. Prokhorov, “$p$-elementary subgroups of the Cremona group of rank 3”, Classification of Algebraic Varieties, EMS Ser. Congr. Rep., Eur. Math. Soc., Zurich, 2011, 327–338 | MR | Zbl
[5] Yu. Prokhorov, C. Shramov, “$p$-subgroups in the space Cremona group”, Math. Nachr., 291:8-9 (2018), 1374–1389 | MR | Zbl
[6] Yu. Prokhorov, “$G$-Fano threefolds. I”, Adv. Geom., 13:3 (2013), 389–418 | MR | Zbl
[7] Yu. G. Prokhorov, “O chisle osobykh tochek trekhmernykh terminalnykh faktorialnykh mnogoobrazii Fano”, Matem. zametki, 101:6 (2017), 949–954 | DOI | MR | Zbl
[8] A. G. Kuznetsov, Yu. G. Prokhorov, C. A. Shramov, “Hilbert schemes of lines and conics and automorphism groups of Fano threefolds”, Jpn. J. Math., 13:1 (2018), 109–185 | MR | Zbl
[9] Vl. Popov, “Jordan groups and automorphism groups of algebraic varieties”, Automorphisms in Birational and Affine Geometry, Springer Proc. Math. Stat., 79, Springer, Cham, 2014, 185–213 | MR | Zbl
[10] Yu. Prokhorov, C. Shramov, “Jordan property for groups of birational selfmaps”, Compositio Math., 150:12 (2014), 2054–2072 | MR | Zbl
[11] W.-L. Chow, “On the geometry of algebraic homogeneous spaces”, Ann. of Math. (2), 50:1 (1949), 32–67 | MR | Zbl
[12] M. Hall Jr., The Theory of Groups, Chelsea Publ., New York, 1976 | MR | Zbl
[13] A. Schweizer, “On the exponent of the automorphism group of a compact Riemann surface”, Arch. Math. (Basel), 107:4 (2016), 329–340 | MR | Zbl
[14] V. A. Iskovskikh, Y. Prokhorov, “Fano varieties”, Algebraic Geometry, V, Encyclopaedia Math. Sci., 47, Springer, Cham, 1999 | MR | Zbl
[15] M. Reid, “Young person's guide to canonical singularities”, Algebraic Geometry, Bowdoin, 1985, Proc. Sympos. Pure Math., 46, Part 1, Amer. Math. Soc., Providence, RI, 1987, 345–414 | MR
[16] Yo. Namikawa, “Smoothing Fano 3-folds”, J. Algebraic Geom., 6:2 (1997), 307–324 | MR | Zbl
[17] Y. Kawamata, “Boundedness of $\mathbb{Q}$-Fano threefolds”, Proceedings of the International Conference on Algebra, Part 3, Contemp. Math., 131, Amer. Math. Soc., Providence, RI, 1992, 439–445 | MR
[18] Yu. Prokhorov, “$G$-Fano threefolds. II”, Adv. Geom., 13:3 (2013), 419–434 | MR | Zbl
[19] K. Shin, “$3$-dimensional Fano varieties with canonical singularities”, Tokyo J. Math., 12:2 (1989), 375–385 | MR | Zbl
[20] Sh. Mukai, “Curves, K3 surfaces and Fano 3-folds of genus $\leqslant 10$”, Algebraic Geometry and Commutative Algebra, Vol. I, Kinokuniya, Tokyo, 1988, 357–377 | MR
[21] Yu. Prokhorov, Rationality of Fano Threefolds With Terminal Gorenstein Singularities. I, 2019, arXiv: 1907.05678
[22] V. A. Iskovskikh, “Trekhmernye mnogoobraziya Fano. I”, Izv. AN SSSR. Ser. matem., 41:3 (1977), 516–562 ; “Трехмерные многообразия Фано. II”, Изв. АН СССР. Сер. матем., 42:3 (1978), 506–549 | MR | Zbl | MR | Zbl
[23] O. Debarre, A. G. Kuznetsov, “Gushel–Mukai varieties: classification and birationalities”, Algebr. Geom., 5:1 (2018), 15–76 | MR | Zbl
[24] W. Feit, “The current situation in the theory of finite simple groups”, Actes du Congrès International des Mathématiciens, Tome 1, Gauthier-Villars, Paris, 1971, 55–93 | MR
[25] A. Borel, “Sous-groupes commutatifs et torsion des groupes de Lie compacts connexes”, Tohoku Math. J. (2), 13 (1961), 216–240 | MR | Zbl
[26] A. Borel, J.-P. Serre, “Sur certains sous-groupes des groupes de Lie compacts”, Comment. Math. Helv., 27 (1953), 128–139 | MR | Zbl
[27] K. Tahara, “On the finite subgroups of $\operatorname{GL}(3,\mathbb{Z})$”, Nagoya Math. J., 41 (1971), 169–209 | MR | Zbl