Finite 3-Subgroups in the Cremona Group of Rank 3
Matematičeskie zametki, Tome 108 (2020) no. 5, pp. 725-749
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider 3-subgroups in groups of birational automorphisms of rationally connected threefolds and show that any 3-subgroup can be generated by at most five elements. Moreover, we study groups of regular automorphisms of terminal Fano threefolds and prove that, in all cases which are not among several explicitly described exceptions any 3-subgroup of such group can be generated by at most four elements.
Mots-clés :
automorphism group
Keywords: finite subgroup, Cremona group, rationally connected variety.
Keywords: finite subgroup, Cremona group, rationally connected variety.
@article{MZM_2020_108_5_a7,
author = {A. A. Kuznetsova},
title = {Finite {3-Subgroups} in the {Cremona} {Group} of {Rank} 3},
journal = {Matemati\v{c}eskie zametki},
pages = {725--749},
publisher = {mathdoc},
volume = {108},
number = {5},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a7/}
}
A. A. Kuznetsova. Finite 3-Subgroups in the Cremona Group of Rank 3. Matematičeskie zametki, Tome 108 (2020) no. 5, pp. 725-749. http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a7/