Finite 3-Subgroups in the Cremona Group of Rank 3
Matematičeskie zametki, Tome 108 (2020) no. 5, pp. 725-749.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider 3-subgroups in groups of birational automorphisms of rationally connected threefolds and show that any 3-subgroup can be generated by at most five elements. Moreover, we study groups of regular automorphisms of terminal Fano threefolds and prove that, in all cases which are not among several explicitly described exceptions any 3-subgroup of such group can be generated by at most four elements.
Mots-clés : automorphism group
Keywords: finite subgroup, Cremona group, rationally connected variety.
@article{MZM_2020_108_5_a7,
     author = {A. A. Kuznetsova},
     title = {Finite {3-Subgroups} in the {Cremona} {Group} of {Rank} 3},
     journal = {Matemati\v{c}eskie zametki},
     pages = {725--749},
     publisher = {mathdoc},
     volume = {108},
     number = {5},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a7/}
}
TY  - JOUR
AU  - A. A. Kuznetsova
TI  - Finite 3-Subgroups in the Cremona Group of Rank 3
JO  - Matematičeskie zametki
PY  - 2020
SP  - 725
EP  - 749
VL  - 108
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a7/
LA  - ru
ID  - MZM_2020_108_5_a7
ER  - 
%0 Journal Article
%A A. A. Kuznetsova
%T Finite 3-Subgroups in the Cremona Group of Rank 3
%J Matematičeskie zametki
%D 2020
%P 725-749
%V 108
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a7/
%G ru
%F MZM_2020_108_5_a7
A. A. Kuznetsova. Finite 3-Subgroups in the Cremona Group of Rank 3. Matematičeskie zametki, Tome 108 (2020) no. 5, pp. 725-749. http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a7/

[1] I. V. Dolgachev, V. A. Iskovskikh, “Finite subgroups of the plane Cremona group”, Algebra, Arithmetic, and Geometry, Vol. I, Progr. Math., 269, Boston, MA, Birkhäuser Boston, 2009, 443–548 | MR | Zbl

[2] A. Beauville, “$p$-elementary subgroups of the Cremona group”, J. Algebra, 314:2 (2007), 553–564 | MR | Zbl

[3] Yu. Prokhorov, “2-elementary subgroups of the space Cremona group”, Automorphisms in Birational and Affine Geometry, Springer Proc. Math. Stat., 79, Springer, Cham, 2014, 215–229 | MR | Zbl

[4] Yu. Prokhorov, “$p$-elementary subgroups of the Cremona group of rank 3”, Classification of Algebraic Varieties, EMS Ser. Congr. Rep., Eur. Math. Soc., Zurich, 2011, 327–338 | MR | Zbl

[5] Yu. Prokhorov, C. Shramov, “$p$-subgroups in the space Cremona group”, Math. Nachr., 291:8-9 (2018), 1374–1389 | MR | Zbl

[6] Yu. Prokhorov, “$G$-Fano threefolds. I”, Adv. Geom., 13:3 (2013), 389–418 | MR | Zbl

[7] Yu. G. Prokhorov, “O chisle osobykh tochek trekhmernykh terminalnykh faktorialnykh mnogoobrazii Fano”, Matem. zametki, 101:6 (2017), 949–954 | DOI | MR | Zbl

[8] A. G. Kuznetsov, Yu. G. Prokhorov, C. A. Shramov, “Hilbert schemes of lines and conics and automorphism groups of Fano threefolds”, Jpn. J. Math., 13:1 (2018), 109–185 | MR | Zbl

[9] Vl. Popov, “Jordan groups and automorphism groups of algebraic varieties”, Automorphisms in Birational and Affine Geometry, Springer Proc. Math. Stat., 79, Springer, Cham, 2014, 185–213 | MR | Zbl

[10] Yu. Prokhorov, C. Shramov, “Jordan property for groups of birational selfmaps”, Compositio Math., 150:12 (2014), 2054–2072 | MR | Zbl

[11] W.-L. Chow, “On the geometry of algebraic homogeneous spaces”, Ann. of Math. (2), 50:1 (1949), 32–67 | MR | Zbl

[12] M. Hall Jr., The Theory of Groups, Chelsea Publ., New York, 1976 | MR | Zbl

[13] A. Schweizer, “On the exponent of the automorphism group of a compact Riemann surface”, Arch. Math. (Basel), 107:4 (2016), 329–340 | MR | Zbl

[14] V. A. Iskovskikh, Y. Prokhorov, “Fano varieties”, Algebraic Geometry, V, Encyclopaedia Math. Sci., 47, Springer, Cham, 1999 | MR | Zbl

[15] M. Reid, “Young person's guide to canonical singularities”, Algebraic Geometry, Bowdoin, 1985, Proc. Sympos. Pure Math., 46, Part 1, Amer. Math. Soc., Providence, RI, 1987, 345–414 | MR

[16] Yo. Namikawa, “Smoothing Fano 3-folds”, J. Algebraic Geom., 6:2 (1997), 307–324 | MR | Zbl

[17] Y. Kawamata, “Boundedness of $\mathbb{Q}$-Fano threefolds”, Proceedings of the International Conference on Algebra, Part 3, Contemp. Math., 131, Amer. Math. Soc., Providence, RI, 1992, 439–445 | MR

[18] Yu. Prokhorov, “$G$-Fano threefolds. II”, Adv. Geom., 13:3 (2013), 419–434 | MR | Zbl

[19] K. Shin, “$3$-dimensional Fano varieties with canonical singularities”, Tokyo J. Math., 12:2 (1989), 375–385 | MR | Zbl

[20] Sh. Mukai, “Curves, K3 surfaces and Fano 3-folds of genus $\leqslant 10$”, Algebraic Geometry and Commutative Algebra, Vol. I, Kinokuniya, Tokyo, 1988, 357–377 | MR

[21] Yu. Prokhorov, Rationality of Fano Threefolds With Terminal Gorenstein Singularities. I, 2019, arXiv: 1907.05678

[22] V. A. Iskovskikh, “Trekhmernye mnogoobraziya Fano. I”, Izv. AN SSSR. Ser. matem., 41:3 (1977), 516–562 ; “Трехмерные многообразия Фано. II”, Изв. АН СССР. Сер. матем., 42:3 (1978), 506–549 | MR | Zbl | MR | Zbl

[23] O. Debarre, A. G. Kuznetsov, “Gushel–Mukai varieties: classification and birationalities”, Algebr. Geom., 5:1 (2018), 15–76 | MR | Zbl

[24] W. Feit, “The current situation in the theory of finite simple groups”, Actes du Congrès International des Mathématiciens, Tome 1, Gauthier-Villars, Paris, 1971, 55–93 | MR

[25] A. Borel, “Sous-groupes commutatifs et torsion des groupes de Lie compacts connexes”, Tohoku Math. J. (2), 13 (1961), 216–240 | MR | Zbl

[26] A. Borel, J.-P. Serre, “Sur certains sous-groupes des groupes de Lie compacts”, Comment. Math. Helv., 27 (1953), 128–139 | MR | Zbl

[27] K. Tahara, “On the finite subgroups of $\operatorname{GL}(3,\mathbb{Z})$”, Nagoya Math. J., 41 (1971), 169–209 | MR | Zbl