Finite 3-Subgroups in the Cremona Group of Rank 3
Matematičeskie zametki, Tome 108 (2020) no. 5, pp. 725-749

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider 3-subgroups in groups of birational automorphisms of rationally connected threefolds and show that any 3-subgroup can be generated by at most five elements. Moreover, we study groups of regular automorphisms of terminal Fano threefolds and prove that, in all cases which are not among several explicitly described exceptions any 3-subgroup of such group can be generated by at most four elements.
Mots-clés : automorphism group
Keywords: finite subgroup, Cremona group, rationally connected variety.
@article{MZM_2020_108_5_a7,
     author = {A. A. Kuznetsova},
     title = {Finite {3-Subgroups} in the {Cremona} {Group} of {Rank} 3},
     journal = {Matemati\v{c}eskie zametki},
     pages = {725--749},
     publisher = {mathdoc},
     volume = {108},
     number = {5},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a7/}
}
TY  - JOUR
AU  - A. A. Kuznetsova
TI  - Finite 3-Subgroups in the Cremona Group of Rank 3
JO  - Matematičeskie zametki
PY  - 2020
SP  - 725
EP  - 749
VL  - 108
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a7/
LA  - ru
ID  - MZM_2020_108_5_a7
ER  - 
%0 Journal Article
%A A. A. Kuznetsova
%T Finite 3-Subgroups in the Cremona Group of Rank 3
%J Matematičeskie zametki
%D 2020
%P 725-749
%V 108
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a7/
%G ru
%F MZM_2020_108_5_a7
A. A. Kuznetsova. Finite 3-Subgroups in the Cremona Group of Rank 3. Matematičeskie zametki, Tome 108 (2020) no. 5, pp. 725-749. http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a7/