Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2020_108_5_a4, author = {D. V. Gusev and I. A. Ivanov-Pogodaev and A. Ya. Kanel-Belov}, title = {Collectives of {Automata} in {Finitely} {Generated} {Groups}}, journal = {Matemati\v{c}eskie zametki}, pages = {692--701}, publisher = {mathdoc}, volume = {108}, number = {5}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a4/} }
TY - JOUR AU - D. V. Gusev AU - I. A. Ivanov-Pogodaev AU - A. Ya. Kanel-Belov TI - Collectives of Automata in Finitely Generated Groups JO - Matematičeskie zametki PY - 2020 SP - 692 EP - 701 VL - 108 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a4/ LA - ru ID - MZM_2020_108_5_a4 ER -
D. V. Gusev; I. A. Ivanov-Pogodaev; A. Ya. Kanel-Belov. Collectives of Automata in Finitely Generated Groups. Matematičeskie zametki, Tome 108 (2020) no. 5, pp. 692-701. http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a4/
[1] V. B. Kudryavtsev, G. Kilibarda, Sh. Ushchumlich, “Sistemy avtomatov v labirintakh”, Matem. voposy kibernet., 14 (2005), 93–160 | Zbl
[2] A. V. Andzhans, Povedenie determinirovannykh i veroyatnostnykh avtomatov v labirintakh, Dis. $\dots$ kand. fiz.-matem. nauk, Riga, 1987
[3] G. Kilibarda, “On the minimum universal collectives of automata for plane labyrinths”, Discrete Math. Appl., 3:6 (1993), 555–586 | MR | Zbl
[4] G. Kilibarda, “O minimalnykh universalnykh kollektivakh avtomatov dlya ploskikh labirintov”, Diskret. matem., 6:4 (1994), 133–153 | MR | Zbl
[5] A. Szepietowski, “A finite 5-pebble-automaton can search every maze”, Inform. Process. Lett., 15:5 (1982), 199–204 | MR | Zbl
[6] G. Kilibarda, Sh. Ushchumlich, “O labirintakh-lovushkakh dlya kollektivov avtomatov”, Diskret. matem., 5:2 (1993), 29–50 | MR | Zbl
[7] P. S. Novikov, S. I. Adyan, “O beskonechnykh periodicheskikh gruppakh. I”, Izv. AN SSSR. Ser. matem., 32:1 (1968), 212–244 | MR | Zbl
[8] V. B. Kudryavtsev, A. S. Podkolzin, Sh. Ushchumlich, Vvedenie v teoriyu abstraktnykh avtomatov, Izd-vo Mosk. un-ta, M., 1985 | MR
[9] V. B. Kudryavtsev, S. V. Aleshin, A. S. Podkolzin, Vvedenie v teoriyu avtomatov, Nauka, M., 1985 | MR
[10] F. Kharari, Teoriya grafov, Mir, M., 1973 | MR | Zbl
[11] W. Burnside, “On an unsettled question in the theory of discontinuous groups”, Quart. J., 33 (1902), 230–238 | Zbl
[12] I. N. Sanov, “Reshenie problemy Bernsaida dlya pokazatelya 4”, Uch. zap. Leningr. gos. un-ta. Ser. matem., 10 (1940), 166–170 | Zbl
[13] M. Hall Jr., “Solution of the Burnside problem for exponentsix”, Illinois J. Math, 2 (1958), 764–786 | MR | Zbl
[14] E. S. Golod, “O nil-algebrakh i finitno-approksimiruemykh $p$-gruppakh”, Izv. AN SSSR. Ser. matem., 28:2 (1964), 273–276 | MR | Zbl
[15] S. I. Adyan, Problema Bernsaida i tozhdestva v gruppakh, Nauka, M., 1975 | MR | Zbl
[16] S. I. Adyan, “Novye otsenki nechetnykh periodov beskonechnykh bernsaidovykh grupp”, Izbrannye voprosy matematiki i mekhaniki, Tr. MIAN, 289, MAIK «Nauka/Interperiodika», M., 2015, 41–82 | DOI
[17] S. Ivanov, “The free Burnside groups of sufficiently large exponents”, Internat. J. Algebra Comput., 4:1 (1994), 1–307 | MR
[18] I. G. Lysenok, “Beskonechnye bernsaidovy gruppy chetnogo perioda”, Izv. RAN. Ser. matem., 60:3 (1996), 3–224 | DOI | MR | Zbl