Collectives of Automata in Finitely Generated Groups
Matematičeskie zametki, Tome 108 (2020) no. 5, pp. 692-701

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper is devoted to traversing a maze by a collective of automata. This part of automata theory gave rise to a fairly wide range of diverse problems ([1:u692], [2:u692]), including those related to problems of the theory of computational complexity and probability theory. It turns out that the consideration of complicated algebraic objects, such as Burnside groups, can be interesting in this context. In the paper, we show that the Cayley graph a finitely generated group cannot be traversed by a collective of automata if and only if the group is infinite and its every element is periodic.
Keywords: finite automata, Burnside groups, robots in mazes, maze traversing.
@article{MZM_2020_108_5_a4,
     author = {D. V. Gusev and I. A. Ivanov-Pogodaev and A. Ya. Kanel-Belov},
     title = {Collectives of {Automata} in {Finitely} {Generated} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {692--701},
     publisher = {mathdoc},
     volume = {108},
     number = {5},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a4/}
}
TY  - JOUR
AU  - D. V. Gusev
AU  - I. A. Ivanov-Pogodaev
AU  - A. Ya. Kanel-Belov
TI  - Collectives of Automata in Finitely Generated Groups
JO  - Matematičeskie zametki
PY  - 2020
SP  - 692
EP  - 701
VL  - 108
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a4/
LA  - ru
ID  - MZM_2020_108_5_a4
ER  - 
%0 Journal Article
%A D. V. Gusev
%A I. A. Ivanov-Pogodaev
%A A. Ya. Kanel-Belov
%T Collectives of Automata in Finitely Generated Groups
%J Matematičeskie zametki
%D 2020
%P 692-701
%V 108
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a4/
%G ru
%F MZM_2020_108_5_a4
D. V. Gusev; I. A. Ivanov-Pogodaev; A. Ya. Kanel-Belov. Collectives of Automata in Finitely Generated Groups. Matematičeskie zametki, Tome 108 (2020) no. 5, pp. 692-701. http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a4/