Riesz Potential with Integrable Density in H\"older-Variable Spaces
Matematičeskie zametki, Tome 108 (2020) no. 5, pp. 669-678.

Voir la notice de l'article provenant de la source Math-Net.Ru

Boundedness conditions for spherical and spatial variable-order Riesz potential type operators with integrable density in variable-exponent Hölder spaces are proved.
Keywords: Riesz potential, variable-exponent Hölder space, variable-order Riesz potential type operator.
@article{MZM_2020_108_5_a2,
     author = {B. G. Vakulov and Yu. E. Drobotov},
     title = {Riesz {Potential} with {Integrable} {Density} in {H\"older-Variable} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {669--678},
     publisher = {mathdoc},
     volume = {108},
     number = {5},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a2/}
}
TY  - JOUR
AU  - B. G. Vakulov
AU  - Yu. E. Drobotov
TI  - Riesz Potential with Integrable Density in H\"older-Variable Spaces
JO  - Matematičeskie zametki
PY  - 2020
SP  - 669
EP  - 678
VL  - 108
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a2/
LA  - ru
ID  - MZM_2020_108_5_a2
ER  - 
%0 Journal Article
%A B. G. Vakulov
%A Yu. E. Drobotov
%T Riesz Potential with Integrable Density in H\"older-Variable Spaces
%J Matematičeskie zametki
%D 2020
%P 669-678
%V 108
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a2/
%G ru
%F MZM_2020_108_5_a2
B. G. Vakulov; Yu. E. Drobotov. Riesz Potential with Integrable Density in H\"older-Variable Spaces. Matematičeskie zametki, Tome 108 (2020) no. 5, pp. 669-678. http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a2/

[1] S. G. Samko, Gipersingulyarnye integraly i ikh prilozheniya, Izd-vo RGU, Rostov-na-Donu, 1984

[2] B. G. Vakulov, Teoremy tipa Khardi–Littlvuda–Soboleva ob operatorakh tipa potentsiala v $L_p(S_{n-1},\rho)$, Dep. v VINITI No 5435–V 86, Rostov-na-Donu, 1986 | Zbl

[3] S. L. Sobolev, Vvedenie v teoriyu kubaturnykh formul, Nauka, M., 1974 | MR | Zbl

[4] N. du Plessis, “Spherical fractional integrals”, Trans. Amer. Math. Soc., 84:1 (1957), 262–272 | MR | Zbl

[5] S. G. Samko, “Singulyarnye integraly po sfere i postroenie kharakteristiki po simvolu”, Izv. vuzov. Matem., 1983, no. 4, 28–42 | MR | Zbl

[6] B. G. Vakulov, “Sfericheskie operatory tipa potentsiala v vesovykh prostranstvakh Gëldera peremennogo poryadka”, Vladikavk. matem. zhurn., 7:2 (2005), 26–40 | MR | Zbl

[7] B. G. Vakulov, “Operatory sfericheskoi svertki v prostranstvakh peremennoi gelderovosti”, Matem. zametki, 80:5 (2006), 683–695 | DOI | MR | Zbl

[8] B. G. Vakulov, “Operator tipa potentsiala na sfere v obobschennykh klassakh Geldera”, Izv. vuzov. Matem., 1986, no. 11, 66–69 | MR | Zbl

[9] B. G. Vakulov, G. S. Kostetskaya, Yu. E. Drobotov, “Riesz potentials in generalized Hölder spaces”, Fractal Approaches for Modeling Financial Assets and Predicting Crises, IGI Global, Hershey, PA, 2018, 249–273 | MR

[10] N. Samko, B. Vakulov, “Spherical fractional and hypersingular integrals of varialbe order in generalized Hölder spaces with variable characteristic”, Math. Nachr., 284:2-3 (2011), 355–369 | MR | Zbl

[11] B. G. Vakulov, Yu. E. Drobotov, “Operator tipa potentsiala peremennogo poryadka po $\mathbb{\dot{R}}^n$ v vesovykh prostranstvakh obobschennoi peremennoi gelderovosti”, Sib. elektron. matem. izv., 14 (2017), 647–656 | DOI | Zbl

[12] B. G. Vakulov, E. S. Kochurov, “Operatory drobnogo integrirovaniya i differentsirovaniya peremennogo poryadka v prostranstvakh Geldera $H^{\omega(t,x)}$”, Vladikavk. matem. zhurn., 12:4 (2010), 3–11 | Zbl

[13] B. G. Vakulov, E. S. Kochurov, N. G. Samko, “Otsenki tipa Zigmunda dlya operatorov drobnogo integrirovaniya i differentsirovaniya peremennogo poryadka”, Izv. vuzov. Matem., 2011, no. 6, 25–34 | MR | Zbl

[14] A. I. Ginzburg, N. K. Karapetyants, “Drobnoe integrodifferentsirovanie v gelderovskikh klassakh peremennogo poryadka”, Dokl. AN, 339:4 (1994), 439–441 | MR | Zbl

[15] N. K. Karapetyants, A. I. Ginsburg, “Fractional integrodifferentiation in Hölder classes of arbitrary order”, Georgian Math. J., 2:2 (1995), 141–150 | MR | Zbl

[16] B. Ross, S. Samko, “Fractional integration operator of a variable order in the Hölder spaces $H^{\lambda(x)}$”, Internat. J. Math. Math. Sci., 18:4 (1995), 777–788 | MR | Zbl

[17] S. G. Samko, B. Ross, “Integration and differentiation to a variable fractional order”, Integral Transforms Spec. Funct., 1:4 (1993), 277–300 | Zbl

[18] S. G. Samko, “Fractional integration and differentiation of variable order”, Anal. Math., 21:3 (1995), 213–236 | MR | Zbl

[19] T. Odzijewicz, A. B. Malinowska, D. F. M. Torres, “Fractional variational calculus of variable order”, Advances in Harmonic Analysis and Operator Theory, Oper. Theory Adv. Appl., 229, Birkhäuser, Basel, 2013, 291–301 | MR | Zbl

[20] S. G. Mikhlin, Mnogomernye singulyarnye integraly i integralnye uravneniya, GIFML, M., 1962 | MR