Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2020_108_5_a15, author = {Yu. L. Sachkov}, title = {Conjugate {Points} in the {Generalized} {Dido} {Problem}}, journal = {Matemati\v{c}eskie zametki}, pages = {796--798}, publisher = {mathdoc}, volume = {108}, number = {5}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a15/} }
Yu. L. Sachkov. Conjugate Points in the Generalized Dido Problem. Matematičeskie zametki, Tome 108 (2020) no. 5, pp. 796-798. http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a15/
[1] R. Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl
[2] A. Agrachev, D. Barilari, U. Boscain, A Comprehensive Introduction to Sub-Riemannian Geometry, Cambridge Univ. Press, Cambridge, 2019 | MR | Zbl
[3] Yu. L. Sachkov, Matem. sb., 194:9 (2003), 63–90 | DOI | MR | Zbl
[4] Yu. L. Sachkov, “Symmetries of flat rank two distributions and sub-Riemannian structures”, Trans. Amer. Math. Soc., 356:2 (2004), 457–494 | MR | Zbl
[5] Yu. L. Sachkov, Matem. sb., 197:2 (2006), 95–116 | DOI | MR | Zbl
[6] Yu. L. Sachkov, Matem. sb., 197:4 (2006), 123–150 | DOI | MR | Zbl
[7] Yu. L. Sachkov, Matem. sb., 197:6 (2006), 111–160 | DOI | MR | Zbl
[8] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mischenko, Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1961 | MR
[9] A. A. Agrachev, Yu. L. Sachkov, Geometricheskaya teoriya upravleniya, Fizmatlit, M., 2005
[10] E. T. Uitteker, Dzh. N. Vatson, Kurs sovremennogo analiza, Editorial URSS, M., 2002 | Zbl