Conjugate Points in the Generalized Dido Problem
Matematičeskie zametki, Tome 108 (2020) no. 5, pp. 796-798.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: sub-Riemannian geometry, the generalized Dido problem, conjugate points, local optimality.
Mots-clés : Cartan group
@article{MZM_2020_108_5_a15,
     author = {Yu. L. Sachkov},
     title = {Conjugate {Points} in the {Generalized} {Dido} {Problem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {796--798},
     publisher = {mathdoc},
     volume = {108},
     number = {5},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a15/}
}
TY  - JOUR
AU  - Yu. L. Sachkov
TI  - Conjugate Points in the Generalized Dido Problem
JO  - Matematičeskie zametki
PY  - 2020
SP  - 796
EP  - 798
VL  - 108
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a15/
LA  - ru
ID  - MZM_2020_108_5_a15
ER  - 
%0 Journal Article
%A Yu. L. Sachkov
%T Conjugate Points in the Generalized Dido Problem
%J Matematičeskie zametki
%D 2020
%P 796-798
%V 108
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a15/
%G ru
%F MZM_2020_108_5_a15
Yu. L. Sachkov. Conjugate Points in the Generalized Dido Problem. Matematičeskie zametki, Tome 108 (2020) no. 5, pp. 796-798. http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a15/

[1] R. Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl

[2] A. Agrachev, D. Barilari, U. Boscain, A Comprehensive Introduction to Sub-Riemannian Geometry, Cambridge Univ. Press, Cambridge, 2019 | MR | Zbl

[3] Yu. L. Sachkov, Matem. sb., 194:9 (2003), 63–90 | DOI | MR | Zbl

[4] Yu. L. Sachkov, “Symmetries of flat rank two distributions and sub-Riemannian structures”, Trans. Amer. Math. Soc., 356:2 (2004), 457–494 | MR | Zbl

[5] Yu. L. Sachkov, Matem. sb., 197:2 (2006), 95–116 | DOI | MR | Zbl

[6] Yu. L. Sachkov, Matem. sb., 197:4 (2006), 123–150 | DOI | MR | Zbl

[7] Yu. L. Sachkov, Matem. sb., 197:6 (2006), 111–160 | DOI | MR | Zbl

[8] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mischenko, Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1961 | MR

[9] A. A. Agrachev, Yu. L. Sachkov, Geometricheskaya teoriya upravleniya, Fizmatlit, M., 2005

[10] E. T. Uitteker, Dzh. N. Vatson, Kurs sovremennogo analiza, Editorial URSS, M., 2002 | Zbl