Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2020_108_5_a11, author = {V. T. Shevaldin}, title = {Local approximation by parabolic splines in the mean with large averaging intervals}, journal = {Matemati\v{c}eskie zametki}, pages = {771--781}, publisher = {mathdoc}, volume = {108}, number = {5}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a11/} }
V. T. Shevaldin. Local approximation by parabolic splines in the mean with large averaging intervals. Matematičeskie zametki, Tome 108 (2020) no. 5, pp. 771-781. http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a11/
[1] Yu. N. Subbotin, “Ekstremalnye zadachi funktsionalnoi interpolyatsii i interpolyatsionnye v srednem splainy”, Priblizhenie funktsii i operatorov, Tr. MIAN SSSR, 138, 1975, 118–173 | MR | Zbl
[2] Yu. N. Subbotin, “Ekstremalnaya funktsionalnaya interpolyatsiya v srednem s naimenshim znacheniem $n$-i proizvodnoi pri bolshikh intervalakh usredneniya”, Matem. zametki, 59:1 (1996), 114–132 | DOI | MR | Zbl
[3] Yu. N. Subbotin, “Ekstremalnaya v $L_p$ interpolyatsiya v srednem pri peresekayuschikhsya intervalakh usredneniya”, Izv. RAN. Ser. matem., 61:1 (1997), 177–198 | DOI | MR | Zbl
[4] A. A. Ligun, A. A. Shumeiko, Asimptoticheskie metody vosstanovleniya krivykh, Izd-vo In-ta matem. NAN Ukrainy, Kiev, 1996
[5] V. T. Shevaldin, “Nekotorye zadachi ekstremalnoi interpolyatsii v srednem dlya lineinykh differentsialnykh operatorov”, Ortogonalnye ryady i priblizhenie funktsii, Tr. MIAN SSSR, 164, 1983, 203–240 | MR | Zbl
[6] V. T. Shevaldin, “Ekstremalnaya interpolyatsiya v srednem pri perekryvayuschikhsya intervalakh usredneniya i $L$-splainy”, Izv. RAN. Ser. matem., 62:4 (1998), 201–224 | DOI | MR | Zbl
[7] E. V. Shevaldina, “Approksimatsiya lokalnymi parabolicheskimi splainami funktsii po ikh znacheniyam v srednem”, Tr. IMM UrO RAN, 13, no. 4, 2007, 169–189
[8] H. Behforooz, “Approximation by integro cubic splines”, Appl. Math. Comput., 175:1 (2006), 8–15 | MR | Zbl
[9] H. Behforooz, “Interpolation by integro quintic splines”, Appl. Math. Comput., 216:2 (2010), 364–367 | MR | Zbl
[10] Yu. N. Subbotin, “Nasledovanie svoistv monotonnosti i vypuklosti pri lokalnoi approksimatsii”, Zh. vychisl. matem. i matem. fiz., 33:7 (1993), 996–1003 | MR | Zbl
[11] N. P. Korneichuk, Splainy v teorii priblizheniya, Nauka, M., 1984 | MR | Zbl
[12] V. T. Shevaldin, “Approksimatsiya lokalnymi parabolicheskimi splainami s proizvolnym raspolozheniem uzlov”, Sib. zhurn. vychisl. matem., 8:1 (2005), 77–88 | Zbl