Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2020_108_5_a1, author = {M. V. Balashov}, title = {On the {Gradient} {Projection} {Method} for {Weakly} {Convex} {Functions} on a {Proximally} {Smooth} {Set}}, journal = {Matemati\v{c}eskie zametki}, pages = {657--668}, publisher = {mathdoc}, volume = {108}, number = {5}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a1/} }
TY - JOUR AU - M. V. Balashov TI - On the Gradient Projection Method for Weakly Convex Functions on a Proximally Smooth Set JO - Matematičeskie zametki PY - 2020 SP - 657 EP - 668 VL - 108 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a1/ LA - ru ID - MZM_2020_108_5_a1 ER -
M. V. Balashov. On the Gradient Projection Method for Weakly Convex Functions on a Proximally Smooth Set. Matematičeskie zametki, Tome 108 (2020) no. 5, pp. 657-668. http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a1/
[1] B. T. Polyak, “Gradientnye metody minimizatsii funktsionalov”, Zh. vychisl. matem. i matem. fiz., 3:4 (1963), 643–653 | MR | Zbl
[2] E. S. Levitin, B. T. Polyak, “Metody minimizatsii pri nalichii ogranichenii”, Zh. vychisl. matem. i matem. fiz., 6:5 (1966), 787–823 | MR | Zbl
[3] B. T. Polyak, Vvedenie v optimizatsiyu, Nauka, M, 1983 | Zbl
[4] D. Davis, D. Drusvyatskiy, K. J. MacPhee, C. Paquette, Subgradient Methods for Sharp Weakly Convex Functions, 2018, arXiv: 1803.02461v1
[5] X. Li, Zh. Zhu, A. Man-Cho So, J. D. Lee, Incremental Methods for Weakly Convex Optimization, 2019, arXiv: 1907.11687v1
[6] H. Karimi, J. Nutini, M. Schmidt, “Linear convergence of gradient and proximal-gradient methods under the Polyak–Lojasiewicz condition”, Machine Learning and Knowledge Discovery in Databases, Lecture Notes in Comput. Sci., 9851, Springer, Cham, 2016 | DOI
[7] D. Drusvyatskiy, A. S. Lewis, “Error bounds, quadratic growth, and linear convergence of proximal methods”, Math. Oper. Res., 43:3 (2018), 919–948 | MR | Zbl
[8] J.-P. Vial, “Strong and weak convexity of sets and functions”, Math. Oper. Res., 8:2 (1983), 231–259 | MR | Zbl
[9] F. H. Clarke, R. J. Stern, P. R. Wolenski, “Proximal smoothness and lower-$C^{2}$ property”, J. Convex Anal., 2:1-2 (1995), 117–144 | MR | Zbl
[10] Zh.-P. Oben, I. Ekland, Prikladnoi nelineinyi analiz, Mir, M., 1988 | MR | Zbl
[11] R. A. Poliquin, R. T. Rockafellar, L. Thibault, “Local differentiability of distance functions”, Trans. Amer. Math. Soc., 352:11 (2000), 5231–5249 | MR | Zbl
[12] M. Bounkhel, L. Thibault, “On various notions of regularity of sets in nonsmooth analysis”, Nonlinear Anal., 48:2 (2002), 223–246 | MR | Zbl
[13] P.-A. Absil, J. Malick, “Projection-like retractions on matrix manifolds”, SIAM J. Optim., 22:1 (2012), 135–158 | MR | Zbl
[14] R. T. Rockafellar, R. J. B. Wets, Variational Analysis, Springer-Verlag, Berlin, 2009 | DOI | Zbl
[15] M. V. Balashov, “Metod proektsii gradienta na matrichnykh mnogoobraziyakh”, Zh. vychisl. matem. i matem. fiz., 60:9 (2020), 1453–1461
[16] Yu. E. Nesterov, Vvedenie v vypukluyu optimizatsiyu, MTsMNO, M, 2010
[17] M. V. Balashov, “About the gradient projection algorithm for a strongly convex function and a proximally smooth set”, J. Convex Anal., 24:2 (2017), 493–500 | MR | Zbl
[18] J.-P. Aubin, A. Cellina, Differential Inclusions, Springer-Verlag, Berlin, 1984 | MR | Zbl
[19] H. Liu, W. Wu, A. M.-Ch. So, “Quadratic optimization with orthogonality Constraints: explicit Lojasiewicz exponent and linear convergence of line-search methods”, ICML'16: Proceedings of the 33rd International Conference on International Conference on Machine Learning, Proc. Machine Learning Res., 48, 2016, 1158–1167
[20] M. V. Balashov, “Metod proektsii gradienta dlya proksimalno gladkogo mnozhestva i funktsii s nepreryvnym po Lipshitsu gradientom”, Matem. sb., 211:4 (2020), 3–26 | DOI | Zbl
[21] R. Schneider, A. Uschmajew, “Convergence results for projected line search methods on varieties of low-rank matrices via Lojasiewicz inequality”, SIAM J. Optim., 25:1 (2015), 622–646 | MR | Zbl
[22] M. V. Balashov, B. T. Polyak, A. A. Tremba, “Gradient projection and conditional gradient methods for constrained nonconvex minimization”, Numer. Funct. Anal. Optim., 41:7 (2019), 822–849 | MR