On the Gradient Projection Method for Weakly Convex Functions on a Proximally Smooth Set
Matematičeskie zametki, Tome 108 (2020) no. 5, pp. 657-668

Voir la notice de l'article provenant de la source Math-Net.Ru

Let a weakly convex function (in the general case, nonconvex and nonsmooth) satisfy the quadratic growth condition. It is proved that the gradient projection method for minimizing such a function on a set converges with linear rate on a proximally smooth (nonconvex) set of special form (for example, on a smooth manifold), provided that the weak convexity constant of the function is less than the constant in the quadratic growth condition and the constant of proximal smoothness for the set is sufficiently large. The connection between the quadratic growth condition on the function and other conditions is discussed.
Keywords: weak convexity, quadratic growth, gradient projection method, proximal smoothness, nonsmooth analysis.
@article{MZM_2020_108_5_a1,
     author = {M. V. Balashov},
     title = {On the {Gradient} {Projection} {Method} for {Weakly} {Convex} {Functions} on a {Proximally} {Smooth} {Set}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {657--668},
     publisher = {mathdoc},
     volume = {108},
     number = {5},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a1/}
}
TY  - JOUR
AU  - M. V. Balashov
TI  - On the Gradient Projection Method for Weakly Convex Functions on a Proximally Smooth Set
JO  - Matematičeskie zametki
PY  - 2020
SP  - 657
EP  - 668
VL  - 108
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a1/
LA  - ru
ID  - MZM_2020_108_5_a1
ER  - 
%0 Journal Article
%A M. V. Balashov
%T On the Gradient Projection Method for Weakly Convex Functions on a Proximally Smooth Set
%J Matematičeskie zametki
%D 2020
%P 657-668
%V 108
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a1/
%G ru
%F MZM_2020_108_5_a1
M. V. Balashov. On the Gradient Projection Method for Weakly Convex Functions on a Proximally Smooth Set. Matematičeskie zametki, Tome 108 (2020) no. 5, pp. 657-668. http://geodesic.mathdoc.fr/item/MZM_2020_108_5_a1/