On Zeros of Sums of Cosines
Matematičeskie zametki, Tome 108 (2020) no. 4, pp. 547-551.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that there exist arbitrarily large natural numbers $N$ and distinct nonnegative integers $n_1,\dots,n_N$ for which the number of zeros on $[-\pi,\pi)$ of the trigonometric polynomial $\sum_{j=1}^N \cos(n_j t)$  is  $O(N^{2/3}\log^{2/3} N)$.
Keywords: trigonometric polynomials, Dirichlet kernel.
@article{MZM_2020_108_4_a5,
     author = {S. V. Konyagin},
     title = {On {Zeros} of {Sums} of {Cosines}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {547--551},
     publisher = {mathdoc},
     volume = {108},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_4_a5/}
}
TY  - JOUR
AU  - S. V. Konyagin
TI  - On Zeros of Sums of Cosines
JO  - Matematičeskie zametki
PY  - 2020
SP  - 547
EP  - 551
VL  - 108
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_108_4_a5/
LA  - ru
ID  - MZM_2020_108_4_a5
ER  - 
%0 Journal Article
%A S. V. Konyagin
%T On Zeros of Sums of Cosines
%J Matematičeskie zametki
%D 2020
%P 547-551
%V 108
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_108_4_a5/
%G ru
%F MZM_2020_108_4_a5
S. V. Konyagin. On Zeros of Sums of Cosines. Matematičeskie zametki, Tome 108 (2020) no. 4, pp. 547-551. http://geodesic.mathdoc.fr/item/MZM_2020_108_4_a5/

[1] J. E. Littlewood, Some Problems in Real and Complex Analysis, D. C. Heath and Co., Lexington, MA, 1968 | MR | Zbl

[2] P. Borwein, T. Erdélyi, R. Ferguson, R. Lockhart, “On the zeros of cosine polynomials: solution to a problem of Littlewood”, Ann. of Math. (2), 167:3 (2008), 1109–1117 | DOI | MR | Zbl

[3] T. Erdélyi, “The number of unimodular zeros of self-reciprocal polynomials with coefficients in a finite set”, Acta Arith., 176:2 (2016), 177–200 | MR | Zbl

[4] T. Erdélyi, “Improved lower bound for the number of unimodular zeros of self-reciprocal polynomials with coefficients in a finite set”, Acta Arith., 192:2 (2020), 189–210 | MR | Zbl

[5] J. Sahasrabudhe, “Counting zeros of cosine polynomials: on a problem of Littlewood”, Adv. Math., 343:5 (2019), 495–521 | DOI | MR | Zbl

[6] T. Juŝkeviĉius, J. Sahasrabudhe, Cosine Polynomials with Few Zeros, 2020, arXiv: 2005.01695v1 | Zbl