On the Solvability of Riemann Problems in Grand Hardy Classes
Matematičeskie zametki, Tome 108 (2020) no. 4, pp. 529-546.

Voir la notice de l'article provenant de la source Math-Net.Ru

The grand Hardy classes $H_{p)}^{+}$ and ${}_{m}H_{p)}^{-}$, $p>1$, of functions analytic inside and outside the unit disk, which are generated by the norms of the grand Lebesgue spaces, are defined. Riemann problems of the theory of analytic functions with piecewise continuous coefficient are considered in these spaces. For these problems in grand Hardy classes, a sufficient solvability condition on the coefficient of the problem is found and a general solution is constructed. It should be noted that grand Lebesgue spaces are nonseparable and, therefore, certain classical facts (for example, part of the Riesz theorem) do not hold in these spaces, as well as in the Hardy spaces generated by them. Therefore, one must find a suitable subspace associated with differential equations and study the problems in these subspaces.
Mots-clés : grand Lebesgue space
Keywords: grand Hardy classes, Riesz theorem, Riemann problem.
@article{MZM_2020_108_4_a4,
     author = {M. I. Ismailov},
     title = {On the {Solvability} of {Riemann} {Problems} in {Grand} {Hardy} {Classes}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {529--546},
     publisher = {mathdoc},
     volume = {108},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_4_a4/}
}
TY  - JOUR
AU  - M. I. Ismailov
TI  - On the Solvability of Riemann Problems in Grand Hardy Classes
JO  - Matematičeskie zametki
PY  - 2020
SP  - 529
EP  - 546
VL  - 108
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_108_4_a4/
LA  - ru
ID  - MZM_2020_108_4_a4
ER  - 
%0 Journal Article
%A M. I. Ismailov
%T On the Solvability of Riemann Problems in Grand Hardy Classes
%J Matematičeskie zametki
%D 2020
%P 529-546
%V 108
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_108_4_a4/
%G ru
%F MZM_2020_108_4_a4
M. I. Ismailov. On the Solvability of Riemann Problems in Grand Hardy Classes. Matematičeskie zametki, Tome 108 (2020) no. 4, pp. 529-546. http://geodesic.mathdoc.fr/item/MZM_2020_108_4_a4/

[1] N. I. Muskhelishvili, Singulyarnye integralnye uravneniya. Granichnye zadachi teorii funktsii i nekotorye ikh prilozheniya k matematicheskoi fizike, Nauka, M., 1968 | MR

[2] F. A. Gakhov, Kraevye zadachi, GIFML, M., 1963 | MR

[3] I. N. Vekua, “Sistemy differentsialnykh uravnenii pervogo poryadka ellipticheskogo tipa i granichnye zadachi s primeneniem k teorii obolochek”, Matem. sb., 31 (73):2 (1952), 217–314 | MR | Zbl

[4] G. S. Litvinchuk, Kraevye zadachi i singulyarnye integralnye uravneniya so sdvigom, Nauka, M., 1977 | MR

[5] I. I. Danilyuk, Neregulyarnye granichnye zadachi na ploskosti, Nauka, M., 1975 | MR

[6] I. I. Privalov, Granichnye svoistva odnoznachnykh analiticheskikh funktsii, Izd-vo Mosk. un-ta, M., 1941

[7] P. Kusis, Vvedenie v teoriyu prostranstv $H^p$ s prilozheniem dokazatelstva Volffa teoremy o korone, Mir, M., 1984 | MR | Zbl

[8] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR | Zbl

[9] F. V. Bitsadze, “Ob odnoi sisteme funktsii”, UMN, 5:4 (38) (1950), 154–155 | MR | Zbl

[10] S. M. Ponomarev, “K teorii kraevykh zadach dlya uravnenii smeshannogo tipa v trekhmernykh oblastyakh”, Dokl. AN SSSR, 246:6 (1979), 1303–1306 | MR | Zbl

[11] E. I. Moiseev, “O bazisnosti sistem sinusov i kosinusov v vesovom prostranstve”, Differents. uravneniya, 34:1 (1998), 40–44 | MR | Zbl

[12] E. I. Moiseev, “O bazisnosti sistem sinusov i kosinusov”, Dokl. AN SSSR, 275:4 (1984), 794–798 | MR | Zbl

[13] B. T. Bilalov, “Bazisnost nekotorykh sistem eksponent, kosinusov i sinusov”, Differents. uravneniya, 26:1 (1990), 10–16 | MR | Zbl

[14] B. T. Bilalov, “O bazisnosti sistem eksponent, kosinusov i sinusov v $L_{p}$”, Dokl. AN, 379:2 (2001), 158–160 | MR | Zbl

[15] B. T. Bilalov, “Bazisnye svoistva nekotorykh sistem eksponent, kosinusov i sinusov”, Sib. matem. zhurn., 45:2 (2004), 264–273 | MR | Zbl

[16] B. T. Bilalov, “Ob approksimatsionnykh teoremakh Stouna i Bishopa”, Matem. zametki, 81:5 (2007), 660–665 | DOI | MR | Zbl

[17] B. T. Bilalov, Z. G. Guseynov, “Basicity of a system of exponents with a piece-wise linear phase in variable spaces”, Mediterr. J. Math., 9:3 (2012), 487–498 | DOI | MR | Zbl

[18] B. T. Bilalov, “O reshenii zadachi A. G. Kostyuchenko”, Sib. matem. zhurn., 53:3 (2012), 509–526 | MR | Zbl

[19] A. N. Barmenkov, Ob approksimativnykh svoistvakh nekotorykh sistem funktsii, Dis. $\dots$ kand. fiz.-matem. nauk, Mosk. un-t, M., 1983

[20] A. A. Shkalikov, “Ob odnoi sisteme funktsii”, Matem. zametki, 18:6 (1975), 855–860 | MR | Zbl

[21] F. Xianling, Z. Dun, “On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$”, J. Math. Anal. Appl., 263:2 (2001), 424–446 | MR | Zbl

[22] I. I. Sharapudinov, “O topologii prostranstva $\mathscr L^{p(t)}([0,1])$”, Matem. zametki, 26:4 (1979), 613–632 | MR | Zbl

[23] C. T. Zorko, “Morrey spaces”, Proc. Amer. Math. Soc., 98:4 (1986), 586–592 | DOI | MR | Zbl

[24] C. B. Morrey, Jr., “On the solutions of quasi-linear elliptic partial differential equations”, Trans. Amer. Math. Soc., 43:1 (1938), 126–166 | MR

[25] D. V. Cruz-Uribe, A. Fiorenza, Variable Lebesgue Spaces. Foundations and Harmonic Analysis, Springer-Verlag, Heidelberg, 2013 | MR | Zbl

[26] D. R. Adams, Morrey Spaces, Springer, Cham, 2015 | MR | Zbl

[27] N. Samko, “Weight Hardy and singular operators in Morrey spaces”, J. Math. Anal. Appl, 35:1 (2009), 56–72 | MR

[28] V. M. Kokilashvili, “Boundedness criteria for singular integrals in weighted grand Lebesque spaces”, J. Math. Sci. (N.Y.), 170:1 (2010), 20–33 | DOI | MR | Zbl

[29] R. E. Castilo, H. Rafeiro, An Introductory Course in Lebesgue Spaces, Springer, Cham, 2016 | MR

[30] A. Fiorenza, G. E. Karadzhov, “Grand and small Lebesgue spaces and their analogs”, Z. Anal. Anwendungen, 23:4 (2004), 657–681 | DOI | MR | Zbl

[31] B. T. Bilalov, A. A. Quliyeva, “On basicity of exponential systems in Morrey-type spaces”, Internat. J. Math., 25:6 (2014), 1450054 | DOI | MR | Zbl

[32] B. T. Bilalov, “O bazisnosti vozmuschennoi sistemy eksponent v prostranstvakh tipa Morri”, Sib. matem. zhurn., 60:2 (2019), 323–350 | DOI | Zbl

[33] V. Kokilashvili, A. Meskhi, H. Rafeiro, S. Samko, Integral Operators in Non-Standart Function Spaces. Vol. 2. Variable Exponent Hölder, Morrey–Companato and Grand Spaces, Oper. Theory Adv. Appl., 249, Cham, Springer, 2016 | MR

[34] Z. Meshveliani, “The Riemann–Hilbert problem in weighted Smirnov classes of analytic functions”, Proc. A. Razmadze Math. Inst., 137 (2005), 65–86 | MR | Zbl

[35] G. Manjavidze, V. Manjavidze, “Boundary value problems of analytic and generalized analytic functions”, J. Math. Sci. (N.Y.), 160:6 (2009), 745–821 | DOI | MR | Zbl

[36] B. T. Bilalov, T. B. Gasymov, A. A. Guliyeva, “On the solvability of the Riemann boundary value problem in Morrey–Hardy classes”, Turkish J. Math., 40:50 (2016), 1085–1101 | DOI | MR | Zbl

[37] T. I. Najafov, N. P. Nasibova, “On the noetherness of the Riemann problem in a generalized weighted Hardy classes”, Azerb. J. Math., 5:2 (2015), 109–124 | MR | Zbl

[38] S. R. Sadigova, A. E. Quliyeva, “On the solvability of Riemann–Hilbert problem in the weighted Smirnov classes”, Anal. Math., 44:4 (2018), 587–603 | MR | Zbl

[39] S. R. Sadigova, “The general solution of the homogeneous Riemann problem in the weighted Smirnov classes with general weight”, Azerb. J. Math., 9:2 (2019), 134–147 | MR