Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2020_108_4_a3, author = {D. M. Dvinskikh and A. I. Turin and A. V. Gasnikov and S. S. Omelchenko}, title = {Accelerated and {Unaccelerated} {Stochastic} {Gradient} {Descent} in {Model} {Generality}}, journal = {Matemati\v{c}eskie zametki}, pages = {515--528}, publisher = {mathdoc}, volume = {108}, number = {4}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_4_a3/} }
TY - JOUR AU - D. M. Dvinskikh AU - A. I. Turin AU - A. V. Gasnikov AU - S. S. Omelchenko TI - Accelerated and Unaccelerated Stochastic Gradient Descent in Model Generality JO - Matematičeskie zametki PY - 2020 SP - 515 EP - 528 VL - 108 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2020_108_4_a3/ LA - ru ID - MZM_2020_108_4_a3 ER -
%0 Journal Article %A D. M. Dvinskikh %A A. I. Turin %A A. V. Gasnikov %A S. S. Omelchenko %T Accelerated and Unaccelerated Stochastic Gradient Descent in Model Generality %J Matematičeskie zametki %D 2020 %P 515-528 %V 108 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2020_108_4_a3/ %G ru %F MZM_2020_108_4_a3
D. M. Dvinskikh; A. I. Turin; A. V. Gasnikov; S. S. Omelchenko. Accelerated and Unaccelerated Stochastic Gradient Descent in Model Generality. Matematičeskie zametki, Tome 108 (2020) no. 4, pp. 515-528. http://geodesic.mathdoc.fr/item/MZM_2020_108_4_a3/
[1] A. V. Gasnikov, Sovremennye chislennye metody optimizatsii. Metod universalnogo gradientnogo spuska, MFTI, M., 2018
[2] O. Devolder, Exactness, Inexactness and Stochasticity in First-Order Methods for Large-Scale Convex Optimization, PhD Thesis, Université Catholique de Louvain, Louvain-la-Neuve, 2013
[3] G. Lan, Lectures on Optimization. Methods for Machine Learning, , 2019 http://pwp.gatech.edu/guanghui-lan/wp-content/uploads/sites/330/2019/08/LectureOPTML.pdf
[4] M. Assran, M. Rabbat, On the Convergence of Nesterov's Accelerated Gradient Method in Stochastic Settings, 2020, arXiv: 2002.12414
[5] A. V. Gasnikov, A. I. Tyurin, “Bystryi gradientnyi spusk dlya zadach vypukloi minimizatsii s orakulom, vydayuschim $(\delta,L)$-model funktsii v zaproshennoi tochke”, Zh. vychisl. matem. i matem. fiz., 59:7 (2019), 1137–1150 | DOI | Zbl
[6] E. Gorbunov, D. Dvinskikh, A. Gasnikov, Optimal Decentralized Distributed Algorithms for Stochastic Convex Optimization, 2020, arXiv: 1911.07363
[7] F. S. Stonyakin, D. Dvinskikh, P. Dvurechensky, A. Kroshnin, O. Kuznetsova, A. Agafonov, A. Gasnikov, A. Tyurin, C. A. Uribe, D. Pasechnyuk, S. Artamonov, “Gradient methods for problems with inexact model of the objective”, Mathematical Optimization Theory and Operations Research. MOTOR 2019, Lecture Notes in Comput. Sci., 11548, Springer, Cham, 2019, 97–114 | DOI | Zbl
[8] B. Woodworth, J. Wang, A. Smith, B. McMahan, N. Srebro, Graph Oracle Models, Lower Bounds, and Gaps for Parallel Stochastic Optimization, 2018, arXiv: 1805.10222
[9] Yu. Nesterov, Lectures on Convex Optimization, Springer, Cham, 2018 | MR | Zbl
[10] A. Juditski, A. S. Nemirovski, Large Deviations of Vector-Valued Martingales in $2$-Smooth Normed Spaces, 2008, arXiv: 0809.0813
[11] Yu. Nesterov, “Gradient methods for minimizing composite functions”, Math. Program., 140:1, Ser. B (2013), 125–161 | MR | Zbl
[12] F. S. Stonyakin, “Adaptatsiya k velichinam pogreshnostei dlya nekotorykh metodov optimizatsii gradientnogo tipa”, Tr. IMM UrO RAN, 25, no. 4, 2019, 210–225 | DOI
[13] F. S. Stonyakin, E. A. Vorontsova, M. Alkousa, “New version of mirror prox for variational inequalities with adaptation to inexactness”, Optimization and Applications. OPTIMA 2019, Commun. in Comput. and Inform. Sci., 1145, Springer, Cham, 2020, 427–442 | DOI