Localized Asymptotic Solution of a Variable-Velocity Wave Equation on the Simplest Decorated Graph with Initial Conditions on a Surface
Matematičeskie zametki, Tome 108 (2020) no. 4, pp. 601-616.

Voir la notice de l'article provenant de la source Math-Net.Ru

A variable-velocity wave equation is studied on the simplest decorated graph, i.e., the topological space obtained by attaching a ray to $\mathbb R^3$. The Cauchy problem with initial conditions localized on Euclidean space is considered. The leading term of an asymptotic solution of the problem under consideration as the parameter characterizing the size of the source tends to zero is described by using the construction of the Maslov canonical operator. It is assumed that the point on $\mathbb R^3$ at which the ray is attached is not a singular point of the wavefront.
Keywords: wave equation, Cauchy problem, variable velocity, decorated graph, hybrid manifold.
@article{MZM_2020_108_4_a10,
     author = {A. V. Tsvetkova and A. I. Shafarevich},
     title = {Localized {Asymptotic} {Solution} of a {Variable-Velocity} {Wave} {Equation} on the {Simplest} {Decorated} {Graph} with {Initial} {Conditions} on a {Surface}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {601--616},
     publisher = {mathdoc},
     volume = {108},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_4_a10/}
}
TY  - JOUR
AU  - A. V. Tsvetkova
AU  - A. I. Shafarevich
TI  - Localized Asymptotic Solution of a Variable-Velocity Wave Equation on the Simplest Decorated Graph with Initial Conditions on a Surface
JO  - Matematičeskie zametki
PY  - 2020
SP  - 601
EP  - 616
VL  - 108
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_108_4_a10/
LA  - ru
ID  - MZM_2020_108_4_a10
ER  - 
%0 Journal Article
%A A. V. Tsvetkova
%A A. I. Shafarevich
%T Localized Asymptotic Solution of a Variable-Velocity Wave Equation on the Simplest Decorated Graph with Initial Conditions on a Surface
%J Matematičeskie zametki
%D 2020
%P 601-616
%V 108
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_108_4_a10/
%G ru
%F MZM_2020_108_4_a10
A. V. Tsvetkova; A. I. Shafarevich. Localized Asymptotic Solution of a Variable-Velocity Wave Equation on the Simplest Decorated Graph with Initial Conditions on a Surface. Matematičeskie zametki, Tome 108 (2020) no. 4, pp. 601-616. http://geodesic.mathdoc.fr/item/MZM_2020_108_4_a10/

[1] B. S. Pavlov, M. D. Faddeev, “Model svobodnykh elektronov i zadacha rasseyaniya”, TMF, 55:2 (1983), 257–268 | MR

[2] J. Bruning, V. Geyler, “Scattering on compact manifolds with infinitely thin horns”, J. Math. Phys., 44:2 (2003), 371–405 | DOI | MR | Zbl

[3] A. A. Tolchennikov, “O yadre operatorov Laplasa–Beltrami s potentsialom nulevogo radiusa i na dekorirovannom grafe”, Matem. sb., 199:7 (2008), 123–138 | DOI | MR

[4] Yu. V. Pokornyi, O. M. Penkin, V. L. Pryadiev, A. V. Borovskikh, K. P. Lazarev, S. A. Shabrov, Differentsialnye uravneniya na geometricheskikh grafakh, Fizmatlit, M., 2004 | MR | Zbl

[5] O. V. Korovina, V. L. Pryadiev, “Struktura resheniya smeshannoi zadachi dlya volnovogo uravneniya na kompaktnom geometricheskom grafe v sluchae nenulevoi nachalnoi skorosti”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 9:3 (2009), 37–46 | DOI

[6] A. I. Allilueva, A. I. Shafarevich, “Localized asymptotic solutions of the wave equation with variable velocity on the simplest graphs”, Russ. J. Math. Phys., 24:3 (2017), 279–289 | DOI | MR | Zbl

[7] A. I. Shafarevich, A. V. Tsvetkova, “Cauchy problem for the wave equation on the simplest decorated graph with initial conditions localized on a surface”, Russ. J. Math. Phys., 26:2 (2019), 227–236 | DOI | MR | Zbl

[8] A. V. Tsvetkova, A. I. Shafarevich, “Lokalizovannoe asimptoticheskoe reshenie volnovogo uravneniya s peremennoi skorostyu na prosteishem dekorirovannom grafe”, Differentsialnye uravneniya i dinamicheskie sistemy, Tr. MIAN, 308, MIAN, M., 2020, 265–275 | DOI

[9] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR | Zbl

[10] A. C. Mischenko, B. Yu. Sternin, V. E. Shatalov, Lagranzhevy mnogoobraziya i metod kanonicheskogo operatora, Nauka, M, 1978 | MR

[11] A. I. Allilueva, S. Yu. Dobrokhotov, S. A. Sergeev, A. I. Shafarevich, “Novye predstavleniya kanonicheskogo operatora Maslova i lokalizovannye asimptoticheskie resheniya strogo giperbolicheskikh sistem”, Dokl. AN, 464:3 (2015), 261–266 | DOI | Zbl

[12] S. Yu. Dobrokhotov, A. I. Shafarevich, B. Tirozzi, “Localized wave and vortical solutions to linear hyperbolic systems and their applications to linear shallow water equations”, Russ. J. Math. Phys., 15:2 (2008), 192–221 | DOI | MR | Zbl