Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2020_108_4_a10, author = {A. V. Tsvetkova and A. I. Shafarevich}, title = {Localized {Asymptotic} {Solution} of a {Variable-Velocity} {Wave} {Equation} on the {Simplest} {Decorated} {Graph} with {Initial} {Conditions} on a {Surface}}, journal = {Matemati\v{c}eskie zametki}, pages = {601--616}, publisher = {mathdoc}, volume = {108}, number = {4}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_4_a10/} }
TY - JOUR AU - A. V. Tsvetkova AU - A. I. Shafarevich TI - Localized Asymptotic Solution of a Variable-Velocity Wave Equation on the Simplest Decorated Graph with Initial Conditions on a Surface JO - Matematičeskie zametki PY - 2020 SP - 601 EP - 616 VL - 108 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2020_108_4_a10/ LA - ru ID - MZM_2020_108_4_a10 ER -
%0 Journal Article %A A. V. Tsvetkova %A A. I. Shafarevich %T Localized Asymptotic Solution of a Variable-Velocity Wave Equation on the Simplest Decorated Graph with Initial Conditions on a Surface %J Matematičeskie zametki %D 2020 %P 601-616 %V 108 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2020_108_4_a10/ %G ru %F MZM_2020_108_4_a10
A. V. Tsvetkova; A. I. Shafarevich. Localized Asymptotic Solution of a Variable-Velocity Wave Equation on the Simplest Decorated Graph with Initial Conditions on a Surface. Matematičeskie zametki, Tome 108 (2020) no. 4, pp. 601-616. http://geodesic.mathdoc.fr/item/MZM_2020_108_4_a10/
[1] B. S. Pavlov, M. D. Faddeev, “Model svobodnykh elektronov i zadacha rasseyaniya”, TMF, 55:2 (1983), 257–268 | MR
[2] J. Bruning, V. Geyler, “Scattering on compact manifolds with infinitely thin horns”, J. Math. Phys., 44:2 (2003), 371–405 | DOI | MR | Zbl
[3] A. A. Tolchennikov, “O yadre operatorov Laplasa–Beltrami s potentsialom nulevogo radiusa i na dekorirovannom grafe”, Matem. sb., 199:7 (2008), 123–138 | DOI | MR
[4] Yu. V. Pokornyi, O. M. Penkin, V. L. Pryadiev, A. V. Borovskikh, K. P. Lazarev, S. A. Shabrov, Differentsialnye uravneniya na geometricheskikh grafakh, Fizmatlit, M., 2004 | MR | Zbl
[5] O. V. Korovina, V. L. Pryadiev, “Struktura resheniya smeshannoi zadachi dlya volnovogo uravneniya na kompaktnom geometricheskom grafe v sluchae nenulevoi nachalnoi skorosti”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 9:3 (2009), 37–46 | DOI
[6] A. I. Allilueva, A. I. Shafarevich, “Localized asymptotic solutions of the wave equation with variable velocity on the simplest graphs”, Russ. J. Math. Phys., 24:3 (2017), 279–289 | DOI | MR | Zbl
[7] A. I. Shafarevich, A. V. Tsvetkova, “Cauchy problem for the wave equation on the simplest decorated graph with initial conditions localized on a surface”, Russ. J. Math. Phys., 26:2 (2019), 227–236 | DOI | MR | Zbl
[8] A. V. Tsvetkova, A. I. Shafarevich, “Lokalizovannoe asimptoticheskoe reshenie volnovogo uravneniya s peremennoi skorostyu na prosteishem dekorirovannom grafe”, Differentsialnye uravneniya i dinamicheskie sistemy, Tr. MIAN, 308, MIAN, M., 2020, 265–275 | DOI
[9] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR | Zbl
[10] A. C. Mischenko, B. Yu. Sternin, V. E. Shatalov, Lagranzhevy mnogoobraziya i metod kanonicheskogo operatora, Nauka, M, 1978 | MR
[11] A. I. Allilueva, S. Yu. Dobrokhotov, S. A. Sergeev, A. I. Shafarevich, “Novye predstavleniya kanonicheskogo operatora Maslova i lokalizovannye asimptoticheskie resheniya strogo giperbolicheskikh sistem”, Dokl. AN, 464:3 (2015), 261–266 | DOI | Zbl
[12] S. Yu. Dobrokhotov, A. I. Shafarevich, B. Tirozzi, “Localized wave and vortical solutions to linear hyperbolic systems and their applications to linear shallow water equations”, Russ. J. Math. Phys., 15:2 (2008), 192–221 | DOI | MR | Zbl