The Equations of Dirac and Maxwell as a Result of Combining Minkowski Space and the Space of Orientations into Seven-Dimensional Space-Time
Matematičeskie zametki, Tome 108 (2020) no. 3, pp. 412-427.

Voir la notice de l'article provenant de la source Math-Net.Ru

The multicomponent wave function of the spin and vector fields is presented as a one-component function depending on the position and orientation of the zero-size moving rotating observer. It is shown that the Dirac and Maxwell equations and a fine structure constant are the result of the connection of two spaces: the Minkowski space and the space of orientations (the observer), and this relationship is not mathematical, but physical in nature.
Keywords: seven-dimensional space-time, spinor representation of the Lorentz group.
@article{MZM_2020_108_3_a6,
     author = {R. A. Sventkovsky},
     title = {The {Equations} of {Dirac} and {Maxwell} as a {Result} of {Combining} {Minkowski} {Space} and the {Space} of {Orientations} into {Seven-Dimensional} {Space-Time}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {412--427},
     publisher = {mathdoc},
     volume = {108},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_3_a6/}
}
TY  - JOUR
AU  - R. A. Sventkovsky
TI  - The Equations of Dirac and Maxwell as a Result of Combining Minkowski Space and the Space of Orientations into Seven-Dimensional Space-Time
JO  - Matematičeskie zametki
PY  - 2020
SP  - 412
EP  - 427
VL  - 108
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_108_3_a6/
LA  - ru
ID  - MZM_2020_108_3_a6
ER  - 
%0 Journal Article
%A R. A. Sventkovsky
%T The Equations of Dirac and Maxwell as a Result of Combining Minkowski Space and the Space of Orientations into Seven-Dimensional Space-Time
%J Matematičeskie zametki
%D 2020
%P 412-427
%V 108
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_108_3_a6/
%G ru
%F MZM_2020_108_3_a6
R. A. Sventkovsky. The Equations of Dirac and Maxwell as a Result of Combining Minkowski Space and the Space of Orientations into Seven-Dimensional Space-Time. Matematičeskie zametki, Tome 108 (2020) no. 3, pp. 412-427. http://geodesic.mathdoc.fr/item/MZM_2020_108_3_a6/

[1] L. Bidenkharn, Dzh. Lauk, Uglovoi moment v kvantovoi fizike. T. 1, Mir, M., 1984 | MR

[2] D. A. Varshalovich, A. N. Moskalev, V. K. Khersonskii, Kvantovaya teoriya uglovogo momenta, Nauka, M., 1975 | MR

[3] R. A. Sventkovsky, “Angular symmetry of space-time and the spinor representation of Poincare group”, Int. J. Phys. Sci., 9:9 (2014), 213–223 | DOI

[4] E. Cartan, “Sur la possibilité de plonger un espace Riemannien donné dans un espace euclidien”, Ann. Soc. Pol. Math., 6 (1928), 1–7 | Zbl

[5] O. V. Baburova, Yu. A. Portnov, B. N. Frolov, V. E. Shamrova, “O geodezicheskikh v prostranstve parametrov gruppy vraschenii”, Prostranstvo, vremya i fundamentalnye vzaimodeistviya, 2018, no. 2, 18–27 | DOI

[6] Yu. A. Portnov, “Gravitational interaction in seven-dimensional space-time”, Gravit. Cosmol., 17:2 (2011), 152–160 | MR

[7] Y. Ne'eman, T. Regge, “Gravity and supergravity as gauge theories on a group manifold”, Phys. Lett., 74 (1978), 54–56 | DOI

[8] R. A. Sventkovsky, “Seven-dimensional space-time and its objects: arbitrary spin state, electromagnetic fields, mirror symmetry and superconductivity”, Int. J. Phys. Sci., 13:9 (2018), 132–146 | DOI

[9] R. A. Sventkovskii, “Kodirovanie informatsii s pomoschyu bazisnykh funktsii spinovykh sostoyanii i osnovnykh zakonov prirody”, Informatizatsiya i svyaz, 2012, no. 8, 158–161

[10] R. Jante, B. J. Schroers, “Taub-NUT dynamics with a magnetic field”, J. Geom. Phys., 104 (2016), 305–328 | MR

[11] V. Pauli, Teoriya otnositelnosti, Nauka, M., 1991 | MR