Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2020_108_3_a6, author = {R. A. Sventkovsky}, title = {The {Equations} of {Dirac} and {Maxwell} as a {Result} of {Combining} {Minkowski} {Space} and the {Space} of {Orientations} into {Seven-Dimensional} {Space-Time}}, journal = {Matemati\v{c}eskie zametki}, pages = {412--427}, publisher = {mathdoc}, volume = {108}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_3_a6/} }
TY - JOUR AU - R. A. Sventkovsky TI - The Equations of Dirac and Maxwell as a Result of Combining Minkowski Space and the Space of Orientations into Seven-Dimensional Space-Time JO - Matematičeskie zametki PY - 2020 SP - 412 EP - 427 VL - 108 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2020_108_3_a6/ LA - ru ID - MZM_2020_108_3_a6 ER -
%0 Journal Article %A R. A. Sventkovsky %T The Equations of Dirac and Maxwell as a Result of Combining Minkowski Space and the Space of Orientations into Seven-Dimensional Space-Time %J Matematičeskie zametki %D 2020 %P 412-427 %V 108 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2020_108_3_a6/ %G ru %F MZM_2020_108_3_a6
R. A. Sventkovsky. The Equations of Dirac and Maxwell as a Result of Combining Minkowski Space and the Space of Orientations into Seven-Dimensional Space-Time. Matematičeskie zametki, Tome 108 (2020) no. 3, pp. 412-427. http://geodesic.mathdoc.fr/item/MZM_2020_108_3_a6/
[1] L. Bidenkharn, Dzh. Lauk, Uglovoi moment v kvantovoi fizike. T. 1, Mir, M., 1984 | MR
[2] D. A. Varshalovich, A. N. Moskalev, V. K. Khersonskii, Kvantovaya teoriya uglovogo momenta, Nauka, M., 1975 | MR
[3] R. A. Sventkovsky, “Angular symmetry of space-time and the spinor representation of Poincare group”, Int. J. Phys. Sci., 9:9 (2014), 213–223 | DOI
[4] E. Cartan, “Sur la possibilité de plonger un espace Riemannien donné dans un espace euclidien”, Ann. Soc. Pol. Math., 6 (1928), 1–7 | Zbl
[5] O. V. Baburova, Yu. A. Portnov, B. N. Frolov, V. E. Shamrova, “O geodezicheskikh v prostranstve parametrov gruppy vraschenii”, Prostranstvo, vremya i fundamentalnye vzaimodeistviya, 2018, no. 2, 18–27 | DOI
[6] Yu. A. Portnov, “Gravitational interaction in seven-dimensional space-time”, Gravit. Cosmol., 17:2 (2011), 152–160 | MR
[7] Y. Ne'eman, T. Regge, “Gravity and supergravity as gauge theories on a group manifold”, Phys. Lett., 74 (1978), 54–56 | DOI
[8] R. A. Sventkovsky, “Seven-dimensional space-time and its objects: arbitrary spin state, electromagnetic fields, mirror symmetry and superconductivity”, Int. J. Phys. Sci., 13:9 (2018), 132–146 | DOI
[9] R. A. Sventkovskii, “Kodirovanie informatsii s pomoschyu bazisnykh funktsii spinovykh sostoyanii i osnovnykh zakonov prirody”, Informatizatsiya i svyaz, 2012, no. 8, 158–161
[10] R. Jante, B. J. Schroers, “Taub-NUT dynamics with a magnetic field”, J. Geom. Phys., 104 (2016), 305–328 | MR
[11] V. Pauli, Teoriya otnositelnosti, Nauka, M., 1991 | MR