On the Passage to the Limit in the Construction of Geometric Solutions of the Riemann Problem
Matematičeskie zametki, Tome 108 (2020) no. 3, pp. 380-396.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method for constructing geometric solutions of the Riemann problem for an impulsively perturbed conservation law is described. A complete classification of the possible patterns of the phase flow is given and, for each of the possible cases, the limit in the sense of Hausdorff is constructed.
Keywords: Riemann problem, geometric solutions, conservation laws.
@article{MZM_2020_108_3_a4,
     author = {V. V. Palin},
     title = {On the {Passage} to the {Limit} in the {Construction} of {Geometric} {Solutions} of the {Riemann} {Problem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {380--396},
     publisher = {mathdoc},
     volume = {108},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_3_a4/}
}
TY  - JOUR
AU  - V. V. Palin
TI  - On the Passage to the Limit in the Construction of Geometric Solutions of the Riemann Problem
JO  - Matematičeskie zametki
PY  - 2020
SP  - 380
EP  - 396
VL  - 108
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_108_3_a4/
LA  - ru
ID  - MZM_2020_108_3_a4
ER  - 
%0 Journal Article
%A V. V. Palin
%T On the Passage to the Limit in the Construction of Geometric Solutions of the Riemann Problem
%J Matematičeskie zametki
%D 2020
%P 380-396
%V 108
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_108_3_a4/
%G ru
%F MZM_2020_108_3_a4
V. V. Palin. On the Passage to the Limit in the Construction of Geometric Solutions of the Riemann Problem. Matematičeskie zametki, Tome 108 (2020) no. 3, pp. 380-396. http://geodesic.mathdoc.fr/item/MZM_2020_108_3_a4/

[1] P. D. Laks, Giperbolicheskie differentsialnye uravneniya v chastnykh proizvodnykh, RKhD, Izhevsk, 2010 | MR

[2] V. G. Danilov, V. M. Shelkovich, “Delta-shock wave type solution of hyperbolic systems of conservation laws”, Quart. Appl. Math., 63:3 (2005), 401–427 | DOI | MR

[3] H. Holden, N. H. Risebro, Front Tracking for Hyperbolic Conservation Laws, Springer-Verlag, Berlin, 2015 | MR

[4] B. Andreianov, K. H. Karlsen, N. H. Risebro, “A theory of $L^1$-dissipative solvers for scalar conservation laws with discontinuous flux”, Arch. Ration. Mech. Anal., 201:1 (2011), 27–86 | DOI | MR

[5] A. Vasseur, “Well-posedness of scalar conservation laws with singular sources”, Methods Appl. Anal., 9:2 (2002), 291–312 | DOI | MR

[6] G. Guerra, W. Shen, “Vanishing viscosity and backward Euler approximations for conservation laws with discontinuous flux”, SIAM J. Math. Anal., 51:4 (2019), 3112–3144 | DOI | MR

[7] V. V. Palin, “Geometricheskie resheniya zadachi Rimana dlya skalyarnogo zakona sokhraneniya”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 22:4 (2018), 620–646 | DOI

[8] A. F. Filippov, Vvedenie v teoriyu differentsialnykh uravnenii, KomKniga, M., 2007