@article{MZM_2020_108_3_a4,
author = {V. V. Palin},
title = {On the {Passage} to the {Limit} in the {Construction} of {Geometric} {Solutions} of the {Riemann} {Problem}},
journal = {Matemati\v{c}eskie zametki},
pages = {380--396},
year = {2020},
volume = {108},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_3_a4/}
}
V. V. Palin. On the Passage to the Limit in the Construction of Geometric Solutions of the Riemann Problem. Matematičeskie zametki, Tome 108 (2020) no. 3, pp. 380-396. http://geodesic.mathdoc.fr/item/MZM_2020_108_3_a4/
[1] P. D. Laks, Giperbolicheskie differentsialnye uravneniya v chastnykh proizvodnykh, RKhD, Izhevsk, 2010 | MR
[2] V. G. Danilov, V. M. Shelkovich, “Delta-shock wave type solution of hyperbolic systems of conservation laws”, Quart. Appl. Math., 63:3 (2005), 401–427 | DOI | MR
[3] H. Holden, N. H. Risebro, Front Tracking for Hyperbolic Conservation Laws, Springer-Verlag, Berlin, 2015 | MR
[4] B. Andreianov, K. H. Karlsen, N. H. Risebro, “A theory of $L^1$-dissipative solvers for scalar conservation laws with discontinuous flux”, Arch. Ration. Mech. Anal., 201:1 (2011), 27–86 | DOI | MR
[5] A. Vasseur, “Well-posedness of scalar conservation laws with singular sources”, Methods Appl. Anal., 9:2 (2002), 291–312 | DOI | MR
[6] G. Guerra, W. Shen, “Vanishing viscosity and backward Euler approximations for conservation laws with discontinuous flux”, SIAM J. Math. Anal., 51:4 (2019), 3112–3144 | DOI | MR
[7] V. V. Palin, “Geometricheskie resheniya zadachi Rimana dlya skalyarnogo zakona sokhraneniya”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 22:4 (2018), 620–646 | DOI
[8] A. F. Filippov, Vvedenie v teoriyu differentsialnykh uravnenii, KomKniga, M., 2007