On the Passage to the Limit in the Construction of Geometric Solutions of the Riemann Problem
Matematičeskie zametki, Tome 108 (2020) no. 3, pp. 380-396
Voir la notice de l'article provenant de la source Math-Net.Ru
A method for constructing geometric solutions of the Riemann problem for an impulsively perturbed conservation law is described. A complete classification of the possible patterns of the phase flow is given and, for each of the possible cases, the limit in the sense of Hausdorff is constructed.
Keywords:
Riemann problem, geometric solutions, conservation laws.
@article{MZM_2020_108_3_a4,
author = {V. V. Palin},
title = {On the {Passage} to the {Limit} in the {Construction} of {Geometric} {Solutions} of the {Riemann} {Problem}},
journal = {Matemati\v{c}eskie zametki},
pages = {380--396},
publisher = {mathdoc},
volume = {108},
number = {3},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_3_a4/}
}
TY - JOUR AU - V. V. Palin TI - On the Passage to the Limit in the Construction of Geometric Solutions of the Riemann Problem JO - Matematičeskie zametki PY - 2020 SP - 380 EP - 396 VL - 108 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2020_108_3_a4/ LA - ru ID - MZM_2020_108_3_a4 ER -
V. V. Palin. On the Passage to the Limit in the Construction of Geometric Solutions of the Riemann Problem. Matematičeskie zametki, Tome 108 (2020) no. 3, pp. 380-396. http://geodesic.mathdoc.fr/item/MZM_2020_108_3_a4/