On the Passage to the Limit in the Construction of Geometric Solutions of the Riemann Problem
Matematičeskie zametki, Tome 108 (2020) no. 3, pp. 380-396

Voir la notice de l'article provenant de la source Math-Net.Ru

A method for constructing geometric solutions of the Riemann problem for an impulsively perturbed conservation law is described. A complete classification of the possible patterns of the phase flow is given and, for each of the possible cases, the limit in the sense of Hausdorff is constructed.
Keywords: Riemann problem, geometric solutions, conservation laws.
@article{MZM_2020_108_3_a4,
     author = {V. V. Palin},
     title = {On the {Passage} to the {Limit} in the {Construction} of {Geometric} {Solutions} of the {Riemann} {Problem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {380--396},
     publisher = {mathdoc},
     volume = {108},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_3_a4/}
}
TY  - JOUR
AU  - V. V. Palin
TI  - On the Passage to the Limit in the Construction of Geometric Solutions of the Riemann Problem
JO  - Matematičeskie zametki
PY  - 2020
SP  - 380
EP  - 396
VL  - 108
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_108_3_a4/
LA  - ru
ID  - MZM_2020_108_3_a4
ER  - 
%0 Journal Article
%A V. V. Palin
%T On the Passage to the Limit in the Construction of Geometric Solutions of the Riemann Problem
%J Matematičeskie zametki
%D 2020
%P 380-396
%V 108
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_108_3_a4/
%G ru
%F MZM_2020_108_3_a4
V. V. Palin. On the Passage to the Limit in the Construction of Geometric Solutions of the Riemann Problem. Matematičeskie zametki, Tome 108 (2020) no. 3, pp. 380-396. http://geodesic.mathdoc.fr/item/MZM_2020_108_3_a4/