Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2020_108_3_a4, author = {V. V. Palin}, title = {On the {Passage} to the {Limit} in the {Construction} of {Geometric} {Solutions} of the {Riemann} {Problem}}, journal = {Matemati\v{c}eskie zametki}, pages = {380--396}, publisher = {mathdoc}, volume = {108}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_3_a4/} }
TY - JOUR AU - V. V. Palin TI - On the Passage to the Limit in the Construction of Geometric Solutions of the Riemann Problem JO - Matematičeskie zametki PY - 2020 SP - 380 EP - 396 VL - 108 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2020_108_3_a4/ LA - ru ID - MZM_2020_108_3_a4 ER -
V. V. Palin. On the Passage to the Limit in the Construction of Geometric Solutions of the Riemann Problem. Matematičeskie zametki, Tome 108 (2020) no. 3, pp. 380-396. http://geodesic.mathdoc.fr/item/MZM_2020_108_3_a4/
[1] P. D. Laks, Giperbolicheskie differentsialnye uravneniya v chastnykh proizvodnykh, RKhD, Izhevsk, 2010 | MR
[2] V. G. Danilov, V. M. Shelkovich, “Delta-shock wave type solution of hyperbolic systems of conservation laws”, Quart. Appl. Math., 63:3 (2005), 401–427 | DOI | MR
[3] H. Holden, N. H. Risebro, Front Tracking for Hyperbolic Conservation Laws, Springer-Verlag, Berlin, 2015 | MR
[4] B. Andreianov, K. H. Karlsen, N. H. Risebro, “A theory of $L^1$-dissipative solvers for scalar conservation laws with discontinuous flux”, Arch. Ration. Mech. Anal., 201:1 (2011), 27–86 | DOI | MR
[5] A. Vasseur, “Well-posedness of scalar conservation laws with singular sources”, Methods Appl. Anal., 9:2 (2002), 291–312 | DOI | MR
[6] G. Guerra, W. Shen, “Vanishing viscosity and backward Euler approximations for conservation laws with discontinuous flux”, SIAM J. Math. Anal., 51:4 (2019), 3112–3144 | DOI | MR
[7] V. V. Palin, “Geometricheskie resheniya zadachi Rimana dlya skalyarnogo zakona sokhraneniya”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 22:4 (2018), 620–646 | DOI
[8] A. F. Filippov, Vvedenie v teoriyu differentsialnykh uravnenii, KomKniga, M., 2007