Lagrangian Manifolds and Efficient Short-Wave Asymptotics in a Neighborhood of a Caustic Cusp
Matematičeskie zametki, Tome 108 (2020) no. 3, pp. 334-359.

Voir la notice de l'article provenant de la source Math-Net.Ru

We develop an approach to writing efficient short-wave asymptotics based on the representation of the Maslov canonical operator in a neighborhood of generic caustics in the form of special functions of a composite argument. A constructive method is proposed that allows expressing the canonical operator near a caustic cusp corresponding to the Lagrangian singularity of type $A_3$ (standard cusp) in terms of the Pearcey function and its first derivatives. It is shown that, conversely, the representation of a Pearcey type integral via the canonical operator turns out to be a very simple way to obtain its asymptotics for large real values of the arguments in terms of Airy functions and WKB-type functions.
Keywords: semiclassical asymptotics, canonical operator, caustic, Pearcey function
Mots-clés : cusp, efficient formula.
@article{MZM_2020_108_3_a1,
     author = {S. Yu. Dobrokhotov and V. E. Nazaikinskii},
     title = {Lagrangian {Manifolds} and {Efficient} {Short-Wave} {Asymptotics} in a {Neighborhood} of a {Caustic} {Cusp}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {334--359},
     publisher = {mathdoc},
     volume = {108},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_3_a1/}
}
TY  - JOUR
AU  - S. Yu. Dobrokhotov
AU  - V. E. Nazaikinskii
TI  - Lagrangian Manifolds and Efficient Short-Wave Asymptotics in a Neighborhood of a Caustic Cusp
JO  - Matematičeskie zametki
PY  - 2020
SP  - 334
EP  - 359
VL  - 108
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_108_3_a1/
LA  - ru
ID  - MZM_2020_108_3_a1
ER  - 
%0 Journal Article
%A S. Yu. Dobrokhotov
%A V. E. Nazaikinskii
%T Lagrangian Manifolds and Efficient Short-Wave Asymptotics in a Neighborhood of a Caustic Cusp
%J Matematičeskie zametki
%D 2020
%P 334-359
%V 108
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_108_3_a1/
%G ru
%F MZM_2020_108_3_a1
S. Yu. Dobrokhotov; V. E. Nazaikinskii. Lagrangian Manifolds and Efficient Short-Wave Asymptotics in a Neighborhood of a Caustic Cusp. Matematičeskie zametki, Tome 108 (2020) no. 3, pp. 334-359. http://geodesic.mathdoc.fr/item/MZM_2020_108_3_a1/

[1] V. P. Maslov, Teoriya vozmuschenii i asimptoticheskie metody, Izd-vo Mosk. un-ta, M., 1965

[2] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR | Zbl

[3] Wolfram Mathematica, www.wolfram.com

[4] S. Yu. Dobrokhotov, V. E. Nazaikinskii, A. I. Shafarevich, “Novye integralnye predstavleniya kanonicheskogo operatora Maslova v osobykh kartakh”, Izv. RAN. Ser. matem., 81:2 (2017), 53–96 | DOI | MR

[5] V. I. Arnold, A. N. Varchenko, S. M. Gusein-Zade, Osobennosti differentsiruemykh otobrazhenii. Tom 1. Klassifikatsiya kriticheskikh tochek, kaustik i volnovykh frontov, Nauka, M., 1982 | MR

[6] V. P. Maslov, Asimptoticheskie metody i teoriya vozmuschenii, Nauka, M., 1988 | MR | Zbl

[7] V. M. Babich, V. S. Buldyrev, Asimptoticheskie metody v difraktsii korotkikh voln. Metod etalonnykh zadach, Nauka, M., 1972 | MR | Zbl

[8] M. V. Fedoryuk, Metod perevala, Nauka, M., 1977 | MR | Zbl

[9] V. A. Borovikov, B. E. Kinber, Geometricheskaya teoriya difraktsii, Svyaz, M., 1978 | MR

[10] Yu. A. Kravtsov, Yu. I. Orlov, Geometricheskaya optika neodnorodnykh sred, Nauka, M., 1980 | MR

[11] M. V. Fedoryuk, Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983 | MR | Zbl

[12] A. S. Kryukovskii, D. S. Lukin, Kraevye i uglovye katastrofy v ravnomernoi geometricheskoi teorii difraktsii, MFTI, M., 1999

[13] T. Pearcey, “The structure of an electromagnetic field in the neighbourhood of a cusp of a caustic”, Philos. Mag. (7), 37:268 (1946), 311–317 | DOI | MR

[14] C. Chester, B. Friedman, F. Ursell, “An extension of the method of steepest descents”, Proc. Cambridge Philos. Soc., 53:3 (1957), 599–611 | DOI | MR

[15] J. B. Keller, “Geometrical theory of diffraction”, J. Opt. Soc. Amer., 52:2 (1962), 116–130 | DOI | MR

[16] D. Ludwig, “Uniform asymptotic expansions at a caustic”, Comm. Pure Appl. Math., 19 (1966), 215–250 | DOI | MR

[17] N. Bleistein, “Uniform asymptotic expansions of integrals with many nearby stationary points and algebraic singularities”, J. Math. Mech., 17 (1967), 533–559 | MR

[18] F. Ursell, “Integrals with a large parameter. Several nearly coincident saddle points”, Proc. Cambridge Philos. Soc., 72:1 (1972), 49–65 | DOI | MR

[19] J. J. Duistermaat, “Oscillatory integrals, Lagrange immersions and unfolding of singularities”, Comm. Pure Appl. Math., 27 (1974), 207–281 | DOI | MR

[20] M. V. Berry, F. J. Wright, “Phase-space projection identities for diffraction catastrophes”, J. Phys. A, 13:1 (1980), 149–160 | DOI | MR

[21] J. N. L. Connor, D. Farrelly, “Theory of cusped rainbows in elastic scattering: uniform semiclassical calculations using Pearcey's integral”, J. Chem. Phys., 75:6 (1981), 2831–2846 | DOI | MR

[22] D. Kaminski, “Asymptotic expansion of the Pearcey integral near the caustic”, SIAM J. Math. Anal., 20:4 (1989), 987–1005 | DOI | MR

[23] R. B. Paris, “The asymptotic behaviour of Pearcey's integral for complex variables”, Proc. Roy. Soc. London Ser. A, 432 (1991), 391–426 | DOI | MR

[24] M. V. Berry, C. J. Howls, “Unfolding the high orders of asymptotic expansions with coalescing saddles: singularity theory, crossover and duality”, Proc. Roy. Soc. London Ser. A, 443 (1993), 107–126 | DOI | MR

[25] M. V. Berry, C. J. Howls, “Overlapping Stokes smoothings: survival of the error function and canonical catastrophe integrals”, Proc. Roy. Soc. London Ser. A, 444 (1994), 201–216 | DOI | MR

[26] D. Kaminski, R. B. Paris, “On the zeroes of the Pearcey integral”, J. Comput. Appl. Math., 107:1 (1999), 31–52 | DOI | MR

[27] A. B. Olde Daalhuis, “On the asymptotics for late coeffcients in uniform asymptotic expansions of integrals with coalescing saddles”, Methods Appl. Anal., 7:4 (2000), 727–745 | MR

[28] F. Olver, Asimptotika i spetsialnye funktsii, Nauka, M., 1990 | MR | Zbl

[29] J. L. López, P. Pagola, The Pearcey Integral in the Highly Oscillatory Region, 2015, arXiv: 1511.05323v1

[30] J. L. López, P. Pagola, Analytic Formulas for the Evaluation of the Pearcey Integral, 2016, arXiv: 1601.00361v1

[31] M. V. Berry, C. J. Howls, “Integrals with Coalescing Saddles”, NIST Handbook of Mathematical Functions, U.S. Dept. Commerce, Washington, DC, 2010, 775–793 | MR

[32] S. Yu. Dobrokhotov, V. E. Nazaikinskii, “Efficient formulas for the Maslov canonical operator near a simple caustic”, Russ. J. Math. Phys., 25:4 (2018), 545–552 | DOI | MR

[33] A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, A. V. Tsvetkova, “Ravnomernaya asimptotika v vide funktsii Eiri dlya kvaziklassicheskikh svyazannykh sostoyanii v odnomernykh i radialno-simmetrichnykh zadachakh”, TMF, 201:3 (2019), 382–414 | DOI

[34] B. Malgranzh, Idealy differentsiruemykh funktsii, Mir, M., 1968 | MR

[35] G. Korn, T. Korn, Spravochnik po matematike: Dlya nauchnykh rabotnikov i inzhenerov, Nauka, M., 1973 | MR

[36] S. Yu. Dobrokhotov, G. Makrakis, V. E. Nazaikinskii, “Kanonicheskii operator Maslova, odna formula Khermandera i lokalizatsiya resheniya Berri–Balazha v teorii volnovykh puchkov”, TMF, 180:2 (2014), 162–188 | DOI | MR

[37] V. A. Fok, “O kanonicheskom preobrazovanii v klassicheskoi i kvantovoi mekhanike”, Vestn. Leningradskogo un-ta, 1959, no. 16, 67–70

[38] K. J. A. Reijnders, D. S. Minenkov, M. I. Katsnelson, S. Yu. Dobrokhotov, “Electronic optics in graphene in the semiclassical approximation”, Ann. Phys., 397 (2018), 65–135 | DOI | MR

[39] V. I. Arnold, “O kharakteristicheskom klasse, vkhodyaschem v usloviya kvantovaniya”, Funkts. analiz i ego pril., 1:1 (1967), 1–14 | MR | Zbl

[40] V. P. Maslov, Operatornye metody, Nauka, M., 1973 | MR | Zbl

[41] S. Yu. Dobrokhotov, P. N. Zhevandrov, “Asymptotic expansions and the Maslov canonical operator in the linear theory of water waves. I. Main constructions and equations for surface gravity waves”, Russ. J. Math. Phys., 10:1 (2003), 1–31 | DOI | MR

[42] A. S. Mischenko, B. Yu. Sternin, V. E. Shatalov, Lagranzhevy mnogoobraziya i metod kanonicheskogo operatora, Nauka, M., 1978 | MR

[43] V. P. Maslov, Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977 | MR | Zbl

[44] S. Yu. Dobrokhotov, V. E. Nazaikinskii, A. A. Tolchennikov, “Uniform formulas for the asymptotic solution of a linear pseudo-differential equation for water waves generated by a localized source”, Russ. J. Math. Phys., 27:2 (2020), 346–370 | DOI | MR