Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2020_108_2_a8, author = {O. I. Reinov}, title = {A {Banach} {Lattice} {Having} the {Approximation} {Property,} but not {Having} the {Bounded} {Approximation} {Property}}, journal = {Matemati\v{c}eskie zametki}, pages = {252--259}, publisher = {mathdoc}, volume = {108}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_2_a8/} }
TY - JOUR AU - O. I. Reinov TI - A Banach Lattice Having the Approximation Property, but not Having the Bounded Approximation Property JO - Matematičeskie zametki PY - 2020 SP - 252 EP - 259 VL - 108 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2020_108_2_a8/ LA - ru ID - MZM_2020_108_2_a8 ER -
O. I. Reinov. A Banach Lattice Having the Approximation Property, but not Having the Bounded Approximation Property. Matematičeskie zametki, Tome 108 (2020) no. 2, pp. 252-259. http://geodesic.mathdoc.fr/item/MZM_2020_108_2_a8/
[1] P. Enflo, “A counterexample to the approximation problem in Banach spaces”, Acta Math., 130 (1973), 309–317 | DOI | MR | Zbl
[2] A. Grothendieck, Produits tensoriels topologiques et espases nucléaires, Mem. Amer. Math. Soc., 16, Amer. Math. Soc., Providence, RI, 1955 | MR
[3] A. M. Davie, “The approximation problem for Banach spaces”, Bull. London Math. Soc., 5 (1973), 261–266 | DOI | MR | Zbl
[4] A. Pich, Operatornye idealy, Mir, M., 1982 | MR
[5] T. Figiel, W. B. Johnson, “The approximation property does not imply the bounded approximation property”, Proc. Amer. Math. Soc., 41 (1973), 197–200 | DOI | MR | Zbl
[6] J. Lindenstrauss, “On James' paper “Separable conjugate spaces””, Israel J. Math., 9 (1971), 279–284 | DOI | MR | Zbl
[7] A. Szankowski, “A Banach lattice without the approximation property”, Israel J. Math., 24 (1976), 329–337 | DOI | MR | Zbl
[8] Y. Gordon, D. R. Lewis, “Absolutely summing operators and local unconditional structures”, Acta Math., 133 (1974), 27–48 | DOI | MR | Zbl
[9] T. Figiel, W. B. Johnson, L. Tzafriri, “On Banach lattices and spaces having local unconditional structure with applications to Lorentz function spaces”, J. Approximation Theory, 13 (1975), 395–412 | DOI | MR | Zbl
[10] J. Diestel, J. J. Uhl Jr., Vector Measures, Amer. Math. Soc., Providence, RI, 1982 | MR