@article{MZM_2020_108_2_a8,
author = {O. I. Reinov},
title = {A {Banach} {Lattice} {Having} the {Approximation} {Property,} but not {Having} the {Bounded} {Approximation} {Property}},
journal = {Matemati\v{c}eskie zametki},
pages = {252--259},
year = {2020},
volume = {108},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_2_a8/}
}
O. I. Reinov. A Banach Lattice Having the Approximation Property, but not Having the Bounded Approximation Property. Matematičeskie zametki, Tome 108 (2020) no. 2, pp. 252-259. http://geodesic.mathdoc.fr/item/MZM_2020_108_2_a8/
[1] P. Enflo, “A counterexample to the approximation problem in Banach spaces”, Acta Math., 130 (1973), 309–317 | DOI | MR | Zbl
[2] A. Grothendieck, Produits tensoriels topologiques et espases nucléaires, Mem. Amer. Math. Soc., 16, Amer. Math. Soc., Providence, RI, 1955 | MR
[3] A. M. Davie, “The approximation problem for Banach spaces”, Bull. London Math. Soc., 5 (1973), 261–266 | DOI | MR | Zbl
[4] A. Pich, Operatornye idealy, Mir, M., 1982 | MR
[5] T. Figiel, W. B. Johnson, “The approximation property does not imply the bounded approximation property”, Proc. Amer. Math. Soc., 41 (1973), 197–200 | DOI | MR | Zbl
[6] J. Lindenstrauss, “On James' paper “Separable conjugate spaces””, Israel J. Math., 9 (1971), 279–284 | DOI | MR | Zbl
[7] A. Szankowski, “A Banach lattice without the approximation property”, Israel J. Math., 24 (1976), 329–337 | DOI | MR | Zbl
[8] Y. Gordon, D. R. Lewis, “Absolutely summing operators and local unconditional structures”, Acta Math., 133 (1974), 27–48 | DOI | MR | Zbl
[9] T. Figiel, W. B. Johnson, L. Tzafriri, “On Banach lattices and spaces having local unconditional structure with applications to Lorentz function spaces”, J. Approximation Theory, 13 (1975), 395–412 | DOI | MR | Zbl
[10] J. Diestel, J. J. Uhl Jr., Vector Measures, Amer. Math. Soc., Providence, RI, 1982 | MR