A Banach Lattice Having the Approximation Property, but not Having the Bounded Approximation Property
Matematičeskie zametki, Tome 108 (2020) no. 2, pp. 252-259.

Voir la notice de l'article provenant de la source Math-Net.Ru

The first example of a Banach space with the approximation property but without the bounded approximation property was given by Figiel and Johnson in 1973. We give the first example of a Banach lattice with the approximation property but without the bounded approximation property. As a consequence, we prove the existence of an integral operator (in the sense of Grothendieck) on a Banach lattice which is not strictly integral.
Keywords: Banach lattice, basis, approximation property, bounded approximation property.
@article{MZM_2020_108_2_a8,
     author = {O. I. Reinov},
     title = {A {Banach} {Lattice} {Having} the {Approximation} {Property,} but not {Having} the {Bounded} {Approximation} {Property}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {252--259},
     publisher = {mathdoc},
     volume = {108},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_2_a8/}
}
TY  - JOUR
AU  - O. I. Reinov
TI  - A Banach Lattice Having the Approximation Property, but not Having the Bounded Approximation Property
JO  - Matematičeskie zametki
PY  - 2020
SP  - 252
EP  - 259
VL  - 108
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_108_2_a8/
LA  - ru
ID  - MZM_2020_108_2_a8
ER  - 
%0 Journal Article
%A O. I. Reinov
%T A Banach Lattice Having the Approximation Property, but not Having the Bounded Approximation Property
%J Matematičeskie zametki
%D 2020
%P 252-259
%V 108
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_108_2_a8/
%G ru
%F MZM_2020_108_2_a8
O. I. Reinov. A Banach Lattice Having the Approximation Property, but not Having the Bounded Approximation Property. Matematičeskie zametki, Tome 108 (2020) no. 2, pp. 252-259. http://geodesic.mathdoc.fr/item/MZM_2020_108_2_a8/

[1] P. Enflo, “A counterexample to the approximation problem in Banach spaces”, Acta Math., 130 (1973), 309–317 | DOI | MR | Zbl

[2] A. Grothendieck, Produits tensoriels topologiques et espases nucléaires, Mem. Amer. Math. Soc., 16, Amer. Math. Soc., Providence, RI, 1955 | MR

[3] A. M. Davie, “The approximation problem for Banach spaces”, Bull. London Math. Soc., 5 (1973), 261–266 | DOI | MR | Zbl

[4] A. Pich, Operatornye idealy, Mir, M., 1982 | MR

[5] T. Figiel, W. B. Johnson, “The approximation property does not imply the bounded approximation property”, Proc. Amer. Math. Soc., 41 (1973), 197–200 | DOI | MR | Zbl

[6] J. Lindenstrauss, “On James' paper “Separable conjugate spaces””, Israel J. Math., 9 (1971), 279–284 | DOI | MR | Zbl

[7] A. Szankowski, “A Banach lattice without the approximation property”, Israel J. Math., 24 (1976), 329–337 | DOI | MR | Zbl

[8] Y. Gordon, D. R. Lewis, “Absolutely summing operators and local unconditional structures”, Acta Math., 133 (1974), 27–48 | DOI | MR | Zbl

[9] T. Figiel, W. B. Johnson, L. Tzafriri, “On Banach lattices and spaces having local unconditional structure with applications to Lorentz function spaces”, J. Approximation Theory, 13 (1975), 395–412 | DOI | MR | Zbl

[10] J. Diestel, J. J. Uhl Jr., Vector Measures, Amer. Math. Soc., Providence, RI, 1982 | MR