On the Fourier--Walsh Transform of Functions from Dyadic Dini--Lipschitz Classes on the Semiaxis
Matematičeskie zametki, Tome 108 (2020) no. 2, pp. 236-251
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $f(x)$ be a function belonging to the Lebesgue class $L^p({\mathbb R}_+)$ on the semiaxis ${\mathbb R}_+=[0,+\infty)$, $1\le p\le 2$, and let $\widehat{f}$ be the Fourier–Walsh transform of the function $f$. In this paper, we give the solution of the following problem: if the function $f$ belongs to the dyadic Dini–Lipschitz class $\operatorname{DLip}_\oplus(\alpha,\beta,p;{\mathbb R}_+)$, $\alpha>0$, $\beta\in{\mathbb R}$, then for what values of $r$ can we guarantee that $\widehat{f}$ belongs to $L^r({\mathbb R}_+)$? The result obtained is an analog of the classical Titchmarsh theorem on the Fourier transform of functions from Lipschitz classes on ${\mathbb R}$.
Keywords:
dyadic harmonic analysis, Dini–Lipschitz classes, Fourier–Walsh transform.
@article{MZM_2020_108_2_a7,
author = {S. S. Platonov},
title = {On the {Fourier--Walsh} {Transform} of {Functions} from {Dyadic} {Dini--Lipschitz} {Classes} on the {Semiaxis}},
journal = {Matemati\v{c}eskie zametki},
pages = {236--251},
publisher = {mathdoc},
volume = {108},
number = {2},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_2_a7/}
}
TY - JOUR AU - S. S. Platonov TI - On the Fourier--Walsh Transform of Functions from Dyadic Dini--Lipschitz Classes on the Semiaxis JO - Matematičeskie zametki PY - 2020 SP - 236 EP - 251 VL - 108 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2020_108_2_a7/ LA - ru ID - MZM_2020_108_2_a7 ER -
S. S. Platonov. On the Fourier--Walsh Transform of Functions from Dyadic Dini--Lipschitz Classes on the Semiaxis. Matematičeskie zametki, Tome 108 (2020) no. 2, pp. 236-251. http://geodesic.mathdoc.fr/item/MZM_2020_108_2_a7/