On the Fourier--Walsh Transform of Functions from Dyadic Dini--Lipschitz Classes on the Semiaxis
Matematičeskie zametki, Tome 108 (2020) no. 2, pp. 236-251

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f(x)$ be a function belonging to the Lebesgue class $L^p({\mathbb R}_+)$ on the semiaxis ${\mathbb R}_+=[0,+\infty)$, $1\le p\le 2$, and let $\widehat{f}$ be the Fourier–Walsh transform of the function $f$. In this paper, we give the solution of the following problem: if the function $f$ belongs to the dyadic Dini–Lipschitz class $\operatorname{DLip}_\oplus(\alpha,\beta,p;{\mathbb R}_+)$, $\alpha>0$, $\beta\in{\mathbb R}$, then for what values of $r$ can we guarantee that $\widehat{f}$ belongs to $L^r({\mathbb R}_+)$? The result obtained is an analog of the classical Titchmarsh theorem on the Fourier transform of functions from Lipschitz classes on ${\mathbb R}$.
Keywords: dyadic harmonic analysis, Dini–Lipschitz classes, Fourier–Walsh transform.
@article{MZM_2020_108_2_a7,
     author = {S. S. Platonov},
     title = {On the {Fourier--Walsh} {Transform} of {Functions} from {Dyadic} {Dini--Lipschitz} {Classes} on the {Semiaxis}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {236--251},
     publisher = {mathdoc},
     volume = {108},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_2_a7/}
}
TY  - JOUR
AU  - S. S. Platonov
TI  - On the Fourier--Walsh Transform of Functions from Dyadic Dini--Lipschitz Classes on the Semiaxis
JO  - Matematičeskie zametki
PY  - 2020
SP  - 236
EP  - 251
VL  - 108
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_108_2_a7/
LA  - ru
ID  - MZM_2020_108_2_a7
ER  - 
%0 Journal Article
%A S. S. Platonov
%T On the Fourier--Walsh Transform of Functions from Dyadic Dini--Lipschitz Classes on the Semiaxis
%J Matematičeskie zametki
%D 2020
%P 236-251
%V 108
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_108_2_a7/
%G ru
%F MZM_2020_108_2_a7
S. S. Platonov. On the Fourier--Walsh Transform of Functions from Dyadic Dini--Lipschitz Classes on the Semiaxis. Matematičeskie zametki, Tome 108 (2020) no. 2, pp. 236-251. http://geodesic.mathdoc.fr/item/MZM_2020_108_2_a7/