@article{MZM_2020_108_2_a7,
author = {S. S. Platonov},
title = {On the {Fourier{\textendash}Walsh} {Transform} of {Functions} from {Dyadic} {Dini{\textendash}Lipschitz} {Classes} on the {Semiaxis}},
journal = {Matemati\v{c}eskie zametki},
pages = {236--251},
year = {2020},
volume = {108},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_2_a7/}
}
S. S. Platonov. On the Fourier–Walsh Transform of Functions from Dyadic Dini–Lipschitz Classes on the Semiaxis. Matematičeskie zametki, Tome 108 (2020) no. 2, pp. 236-251. http://geodesic.mathdoc.fr/item/MZM_2020_108_2_a7/
[1] E. Titchmarsh, Vvedenie v teoriyu integralov Fure, GITTL, M., 1948
[2] O. Szász, “Über den Konvergenzexponenten der Fourierschen Reihen gewisser Funktionenklassen”, Münch. Ber., 1922, 135–150 | Zbl
[3] O. Szász, “Über die Fourierschen Reihen gewisser Funktionenklassen”, Math. Ann., 100:1 (1928), 530–536 | DOI | MR | Zbl
[4] C. W. Onneweer, “Absolute convergence of Fourier series on certain groups”, Duke Math. J., 39 (1972), 599–609 | DOI | MR | Zbl
[5] C. W. Onneweer, “Absolute convergence of Fourier series on certain groups. II”, Duke Math. J., 41 (1974), 679–688 | DOI | MR | Zbl
[6] T. S. Quek, L. Y. H. Yap, “Absolute convergence of Vilenkin–Fourier series”, J. Math. Anal. Appl., 74:1 (1980), 1–14 | DOI | MR | Zbl
[7] M. S. Younis, “On the absolute convergence of Vilenkin–Fourier series”, J. Math. Anal. Appl., 163:1 (1992), 15–19 | DOI | MR | Zbl
[8] R. Daher, J. Delgado, M. Ruzhansky, “Titchmarsh theorems for Fourier transforms of Hölder–Lipschitz functions on compact homogeneous manifolds”, Monatsh. Math., 189:1 (2019), 23–49 | DOI | MR | Zbl
[9] W. R. Bloom, “Absolute convergence of Fourier series on finite-dimensional groups”, Colloq. Math., 46:1 (1982), 97–103 | DOI | MR | Zbl
[10] W. R. Bloom, “A characterisation of Lipschitz classes on finite dimensional groups”, Proc. Amer. Math. Soc., 59:2 (1976), 297–304 | MR | Zbl
[11] F. Shipp, W. R. Wade, P. Simon, Walsh Series. An Introduction to Dyadic Harmonic Analysis, Adam Hilger, Bristol, 1990 | MR
[12] B. I. Golubov, A. V. Efimov, V. A. Skvortsov, Ryady i preobrazovaniya Uolsha. Teoriya i primeneniya, Nauka, M., 1987 | MR | Zbl
[13] B. I. Golubov, “Dvoichnye obobschennye funktsii”, Matem. sb., 198:2 (2007), 67–90 | DOI | MR | Zbl
[14] B. I. Golubov, “Dvoichnyi analog tauberovoi teoremy Vinera i smezhnye voprosy”, Izv. RAN. Ser. matem., 67:1 (2003), 33–58 | DOI | MR | Zbl
[15] B. I. Golubov, “Ob analoge neravenstva Khardi dlya preobrazovaniya Fure–Uolsha”, Izv. RAN. Ser. matem., 65:3 (2001), 3–14 | DOI | MR | Zbl
[16] B. I. Golubov, Elementy dvoichnogo analiza, URSS, M., 2016
[17] S. S. Platonov, “Ob analoge odnoi teoremy Titchmarsha dlya preobrazovaniya Fure–Uolsha”, Matem. zametki, 103:1 (2018), 101–110 | DOI | Zbl
[18] A. I. Rubinshtein, “O modulyakh nepreryvnosti funktsii, opredelennykh na nulmernoi gruppe”, Matem. zametki, 23:3 (1978), 379–388 | MR | Zbl
[19] S. Fridli, “On the modulus of continuity with respect to the functions defined on Vilenkin groups”, Acta Math. Hung.ar, 45:3-4 (1985), 393–396 | DOI | MR | Zbl