On the Fourier--Walsh Transform of Functions from Dyadic Dini--Lipschitz Classes on the Semiaxis
Matematičeskie zametki, Tome 108 (2020) no. 2, pp. 236-251.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $f(x)$ be a function belonging to the Lebesgue class $L^p({\mathbb R}_+)$ on the semiaxis ${\mathbb R}_+=[0,+\infty)$, $1\le p\le 2$, and let $\widehat{f}$ be the Fourier–Walsh transform of the function $f$. In this paper, we give the solution of the following problem: if the function $f$ belongs to the dyadic Dini–Lipschitz class $\operatorname{DLip}_\oplus(\alpha,\beta,p;{\mathbb R}_+)$, $\alpha>0$, $\beta\in{\mathbb R}$, then for what values of $r$ can we guarantee that $\widehat{f}$ belongs to $L^r({\mathbb R}_+)$? The result obtained is an analog of the classical Titchmarsh theorem on the Fourier transform of functions from Lipschitz classes on ${\mathbb R}$.
Keywords: dyadic harmonic analysis, Dini–Lipschitz classes, Fourier–Walsh transform.
@article{MZM_2020_108_2_a7,
     author = {S. S. Platonov},
     title = {On the {Fourier--Walsh} {Transform} of {Functions} from {Dyadic} {Dini--Lipschitz} {Classes} on the {Semiaxis}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {236--251},
     publisher = {mathdoc},
     volume = {108},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_2_a7/}
}
TY  - JOUR
AU  - S. S. Platonov
TI  - On the Fourier--Walsh Transform of Functions from Dyadic Dini--Lipschitz Classes on the Semiaxis
JO  - Matematičeskie zametki
PY  - 2020
SP  - 236
EP  - 251
VL  - 108
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_108_2_a7/
LA  - ru
ID  - MZM_2020_108_2_a7
ER  - 
%0 Journal Article
%A S. S. Platonov
%T On the Fourier--Walsh Transform of Functions from Dyadic Dini--Lipschitz Classes on the Semiaxis
%J Matematičeskie zametki
%D 2020
%P 236-251
%V 108
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_108_2_a7/
%G ru
%F MZM_2020_108_2_a7
S. S. Platonov. On the Fourier--Walsh Transform of Functions from Dyadic Dini--Lipschitz Classes on the Semiaxis. Matematičeskie zametki, Tome 108 (2020) no. 2, pp. 236-251. http://geodesic.mathdoc.fr/item/MZM_2020_108_2_a7/

[1] E. Titchmarsh, Vvedenie v teoriyu integralov Fure, GITTL, M., 1948

[2] O. Szász, “Über den Konvergenzexponenten der Fourierschen Reihen gewisser Funktionenklassen”, Münch. Ber., 1922, 135–150 | Zbl

[3] O. Szász, “Über die Fourierschen Reihen gewisser Funktionenklassen”, Math. Ann., 100:1 (1928), 530–536 | DOI | MR | Zbl

[4] C. W. Onneweer, “Absolute convergence of Fourier series on certain groups”, Duke Math. J., 39 (1972), 599–609 | DOI | MR | Zbl

[5] C. W. Onneweer, “Absolute convergence of Fourier series on certain groups. II”, Duke Math. J., 41 (1974), 679–688 | DOI | MR | Zbl

[6] T. S. Quek, L. Y. H. Yap, “Absolute convergence of Vilenkin–Fourier series”, J. Math. Anal. Appl., 74:1 (1980), 1–14 | DOI | MR | Zbl

[7] M. S. Younis, “On the absolute convergence of Vilenkin–Fourier series”, J. Math. Anal. Appl., 163:1 (1992), 15–19 | DOI | MR | Zbl

[8] R. Daher, J. Delgado, M. Ruzhansky, “Titchmarsh theorems for Fourier transforms of Hölder–Lipschitz functions on compact homogeneous manifolds”, Monatsh. Math., 189:1 (2019), 23–49 | DOI | MR | Zbl

[9] W. R. Bloom, “Absolute convergence of Fourier series on finite-dimensional groups”, Colloq. Math., 46:1 (1982), 97–103 | DOI | MR | Zbl

[10] W. R. Bloom, “A characterisation of Lipschitz classes on finite dimensional groups”, Proc. Amer. Math. Soc., 59:2 (1976), 297–304 | MR | Zbl

[11] F. Shipp, W. R. Wade, P. Simon, Walsh Series. An Introduction to Dyadic Harmonic Analysis, Adam Hilger, Bristol, 1990 | MR

[12] B. I. Golubov, A. V. Efimov, V. A. Skvortsov, Ryady i preobrazovaniya Uolsha. Teoriya i primeneniya, Nauka, M., 1987 | MR | Zbl

[13] B. I. Golubov, “Dvoichnye obobschennye funktsii”, Matem. sb., 198:2 (2007), 67–90 | DOI | MR | Zbl

[14] B. I. Golubov, “Dvoichnyi analog tauberovoi teoremy Vinera i smezhnye voprosy”, Izv. RAN. Ser. matem., 67:1 (2003), 33–58 | DOI | MR | Zbl

[15] B. I. Golubov, “Ob analoge neravenstva Khardi dlya preobrazovaniya Fure–Uolsha”, Izv. RAN. Ser. matem., 65:3 (2001), 3–14 | DOI | MR | Zbl

[16] B. I. Golubov, Elementy dvoichnogo analiza, URSS, M., 2016

[17] S. S. Platonov, “Ob analoge odnoi teoremy Titchmarsha dlya preobrazovaniya Fure–Uolsha”, Matem. zametki, 103:1 (2018), 101–110 | DOI | Zbl

[18] A. I. Rubinshtein, “O modulyakh nepreryvnosti funktsii, opredelennykh na nulmernoi gruppe”, Matem. zametki, 23:3 (1978), 379–388 | MR | Zbl

[19] S. Fridli, “On the modulus of continuity with respect to the functions defined on Vilenkin groups”, Acta Math. Hung.ar, 45:3-4 (1985), 393–396 | DOI | MR | Zbl