On Dominated Extension of Linear Operators
Matematičeskie zametki, Tome 108 (2020) no. 2, pp. 190-199.

Voir la notice de l'article provenant de la source Math-Net.Ru

An ordered topological vector space has the countable dominated extension property if any linear operator ranging in this space, defined on a subspace of a separable metrizable topological vector space, and dominated there by a continuous sublinear operator admits extension to the entire space with preservation of linearity and domination. Our main result is that the strong $\sigma$-interpolation property is a necessary and sufficient condition for a sequentially complete topological vector space ordered by a closed normal reproducing cone to have the countable dominated extension property. Moreover, this fact can be proved in Zermelo–Fraenkel set theory with the axiom of countable choice.
Keywords: ordered topological vector space, reproducing cone, normal cone, separability, $\sigma$-interpolation property, linear operator, dominated extension, axiom of countable choice.
@article{MZM_2020_108_2_a3,
     author = {A. A. Gelieva and Z. A. Kusraeva},
     title = {On {Dominated} {Extension} of {Linear} {Operators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {190--199},
     publisher = {mathdoc},
     volume = {108},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_2_a3/}
}
TY  - JOUR
AU  - A. A. Gelieva
AU  - Z. A. Kusraeva
TI  - On Dominated Extension of Linear Operators
JO  - Matematičeskie zametki
PY  - 2020
SP  - 190
EP  - 199
VL  - 108
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_108_2_a3/
LA  - ru
ID  - MZM_2020_108_2_a3
ER  - 
%0 Journal Article
%A A. A. Gelieva
%A Z. A. Kusraeva
%T On Dominated Extension of Linear Operators
%J Matematičeskie zametki
%D 2020
%P 190-199
%V 108
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_108_2_a3/
%G ru
%F MZM_2020_108_2_a3
A. A. Gelieva; Z. A. Kusraeva. On Dominated Extension of Linear Operators. Matematičeskie zametki, Tome 108 (2020) no. 2, pp. 190-199. http://geodesic.mathdoc.fr/item/MZM_2020_108_2_a3/

[1] A. G. Kusraev, S. S. Kutateladze, Subdifferentsialnoe ischislenie. Teoriya i prilozheniya, Nauka, M., 2007 | MR

[2] Yu. A. Abramovich, A. W. Wickstead, “The regularity of order bounded operators into $C(K)$. II”, Quart. J. Math. Oxford Ser. (2), 44:3 (1993), 257–270 | DOI | MR | Zbl

[3] A. C. Zaanen, Riesz Spaces, North-Holland Math. Library, 2, North-Holland Publ., Amsterdam, 1983 | MR

[4] A. W. Wickstead, “Spaces of operators with the Riesz separation property”, Indag. Math. (N.S.), 6:2 (1995), 235–245 | DOI | MR | Zbl

[5] Kh. Shefer, Topologicheskie vektornye prostranstva, Mir, M., 1971 | MR | Zbl

[6] Y. C. Wong, K. F. Ng, Partially Ordered Topological Vector Spaces, Clarendon Press, Oxford, 1973 | MR | Zbl

[7] N. Dănet, “The space of regular operators with the Riesz decomposition property”, Rend. Circ. Mat. Palermo (2) Suppl., 68, part I (2002), 373–380 | MR

[8] L. V. Kantorovich, G. P. Akilov, Funktsionalnyi analiz, Nauka, M., 1984 | MR | Zbl

[9] H. L. Bentley, H. Herrlich, “Countable choice and pseudometric spaces”, Topology Appl., 85:1-3 (1998), 153–164 | DOI | MR | Zbl

[10] C. D. Aliprantis, O. Burkinshaw, Positive Operators, Pure Appl. Math., 119, Academic Press, Inc., Orlando, FL, 1985 | MR | Zbl

[11] A. D. Ioffe, “A new proof of the equivalence of the Hahn–Banach extension and the least upper bound properties”, Proc. Amer. Math. Soc., 82:3 (1981), 385–389 | DOI | MR | Zbl

[12] D. H. Fremlin, Topological Riesz Spaces and Measure Theory, Cambridge Univ. Press, London, 1974 | MR | Zbl

[13] N. Dănet, “The Riesz decomposition property for the space of regular operators”, Proc. Amer. Math. Soc., 129:2 (2001), 539–542 | DOI | MR

[14] R. M. Dănet, N. C. Wong, “Hahn–Banach–Kantorovich type theorems with the range space not necessarily ($o$)-complete”, Taiwanese J. Math., 6:2 (2002), 241–246 | DOI | MR

[15] N. Dănet, R. M. Dănet, “Extension theorems and the Riesz decomposition property”, Positivity, 7:1-2 (2003), 87–93 | DOI | MR

[16] J. Chen, “Extension theorems with the range space not necessarily Dedekind complete”, Note Mat., 26:2 (2006), 153–160 | MR | Zbl