Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2020_108_2_a3, author = {A. A. Gelieva and Z. A. Kusraeva}, title = {On {Dominated} {Extension} of {Linear} {Operators}}, journal = {Matemati\v{c}eskie zametki}, pages = {190--199}, publisher = {mathdoc}, volume = {108}, number = {2}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_2_a3/} }
A. A. Gelieva; Z. A. Kusraeva. On Dominated Extension of Linear Operators. Matematičeskie zametki, Tome 108 (2020) no. 2, pp. 190-199. http://geodesic.mathdoc.fr/item/MZM_2020_108_2_a3/
[1] A. G. Kusraev, S. S. Kutateladze, Subdifferentsialnoe ischislenie. Teoriya i prilozheniya, Nauka, M., 2007 | MR
[2] Yu. A. Abramovich, A. W. Wickstead, “The regularity of order bounded operators into $C(K)$. II”, Quart. J. Math. Oxford Ser. (2), 44:3 (1993), 257–270 | DOI | MR | Zbl
[3] A. C. Zaanen, Riesz Spaces, North-Holland Math. Library, 2, North-Holland Publ., Amsterdam, 1983 | MR
[4] A. W. Wickstead, “Spaces of operators with the Riesz separation property”, Indag. Math. (N.S.), 6:2 (1995), 235–245 | DOI | MR | Zbl
[5] Kh. Shefer, Topologicheskie vektornye prostranstva, Mir, M., 1971 | MR | Zbl
[6] Y. C. Wong, K. F. Ng, Partially Ordered Topological Vector Spaces, Clarendon Press, Oxford, 1973 | MR | Zbl
[7] N. Dănet, “The space of regular operators with the Riesz decomposition property”, Rend. Circ. Mat. Palermo (2) Suppl., 68, part I (2002), 373–380 | MR
[8] L. V. Kantorovich, G. P. Akilov, Funktsionalnyi analiz, Nauka, M., 1984 | MR | Zbl
[9] H. L. Bentley, H. Herrlich, “Countable choice and pseudometric spaces”, Topology Appl., 85:1-3 (1998), 153–164 | DOI | MR | Zbl
[10] C. D. Aliprantis, O. Burkinshaw, Positive Operators, Pure Appl. Math., 119, Academic Press, Inc., Orlando, FL, 1985 | MR | Zbl
[11] A. D. Ioffe, “A new proof of the equivalence of the Hahn–Banach extension and the least upper bound properties”, Proc. Amer. Math. Soc., 82:3 (1981), 385–389 | DOI | MR | Zbl
[12] D. H. Fremlin, Topological Riesz Spaces and Measure Theory, Cambridge Univ. Press, London, 1974 | MR | Zbl
[13] N. Dănet, “The Riesz decomposition property for the space of regular operators”, Proc. Amer. Math. Soc., 129:2 (2001), 539–542 | DOI | MR
[14] R. M. Dănet, N. C. Wong, “Hahn–Banach–Kantorovich type theorems with the range space not necessarily ($o$)-complete”, Taiwanese J. Math., 6:2 (2002), 241–246 | DOI | MR
[15] N. Dănet, R. M. Dănet, “Extension theorems and the Riesz decomposition property”, Positivity, 7:1-2 (2003), 87–93 | DOI | MR
[16] J. Chen, “Extension theorems with the range space not necessarily Dedekind complete”, Note Mat., 26:2 (2006), 153–160 | MR | Zbl