On Changes of Variable Preserving the Convergence and Absolute Convergence of Fourier Series in the Haar Wavelet System
Matematičeskie zametki, Tome 108 (2020) no. 2, pp. 179-189 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is established that, among all continuously differentiable homeomorphic changes of variable, the absolute convergence of Fourier series in the Haar wavelet system is preserved by only those for which $\varphi^{-1}(0)$ is binary-rational and $\varphi'(x)=\pm 2^m$, where $m$ is an integer and $x\in\mathbb R$. It is also established that this condition is necessary for a continuously differentiable homeomorphic change of variable to preserve the convergence of Fourier series in the Haar wavelet system.
Keywords: Haar wavelets, Fourier–Haar series, continuously differentiable homeomorphism, changes of variable.
@article{MZM_2020_108_2_a2,
     author = {K. Bitsadze},
     title = {On {Changes} of {Variable} {Preserving} the {Convergence} and {Absolute} {Convergence} of {Fourier} {Series} in the {Haar} {Wavelet} {System}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {179--189},
     year = {2020},
     volume = {108},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_2_a2/}
}
TY  - JOUR
AU  - K. Bitsadze
TI  - On Changes of Variable Preserving the Convergence and Absolute Convergence of Fourier Series in the Haar Wavelet System
JO  - Matematičeskie zametki
PY  - 2020
SP  - 179
EP  - 189
VL  - 108
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_108_2_a2/
LA  - ru
ID  - MZM_2020_108_2_a2
ER  - 
%0 Journal Article
%A K. Bitsadze
%T On Changes of Variable Preserving the Convergence and Absolute Convergence of Fourier Series in the Haar Wavelet System
%J Matematičeskie zametki
%D 2020
%P 179-189
%V 108
%N 2
%U http://geodesic.mathdoc.fr/item/MZM_2020_108_2_a2/
%G ru
%F MZM_2020_108_2_a2
K. Bitsadze. On Changes of Variable Preserving the Convergence and Absolute Convergence of Fourier Series in the Haar Wavelet System. Matematičeskie zametki, Tome 108 (2020) no. 2, pp. 179-189. http://geodesic.mathdoc.fr/item/MZM_2020_108_2_a2/

[1] G. Alexits, Konvergenzprobleme der Orthogonalreihen, Verlag der Ungarischen Akademie der Wissenschaften, Budapest, 1960 | MR | Zbl

[2] B. S. Kashin, A. A. Saakyan, Ortogonalnye ryady, Nauka, M., 1984 | MR | Zbl

[3] P. L. Ulyanov, “Ob absolyutnoi i ravnomernoi skhodimosti ryadov Fure”, Matem. sb., 72 (114):2 (1967), 193–225 | MR | Zbl

[4] P. L. Ulyanov, “Absolyutnaya skhodimost ryada Fure–Khaara ot superpozitsii funktsii”, Anal. Math., 4:3 (1978), 225–236 | DOI | MR | Zbl

[5] A. M. Olevskii, “Modifikatsiya funktsii i ryady Fure”, UMN, 40:3 (243) (1985), 157–193 | MR | Zbl

[6] V. M. Bugadze, “O ryadakh Fure–Khaara superpozitsii funktsii”, Matem. sb., 182:2 (1991), 175–202 | MR | Zbl

[7] K. R. Bitsadze, “O zamenakh peremennoi, sokhranyayuschikh skhodimost i absolyutnuyu skhodimost ryadov Fure–Khaara”, Matem. sb., 210:6 (2019), 30–55 | DOI | Zbl

[8] K. Bitsadze, “On changes of variable that preserve convergence and absolute convergence of Fourier series with respect to Haar wavelets system”, Bull. Georgian Acad. Sci., 164:3 (2001), 431–432 | MR | Zbl

[9] E. Hernandes, G. Weiss, A First Course on Wavelets, CRC Press, Boca Raton, FL, 1996 | MR

[10] I. P. Natanson, Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974 | MR

[11] G. Aleksich, Problemy skhodimosti ortogonalnykh ryadov, IL, M., 1963 | MR | Zbl