Radiation Conditions for the Magnetic Helmholtz Equation
Matematičeskie zametki, Tome 108 (2020) no. 2, pp. 171-178.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that, to select a uniqueness class for the magnetic Helmholtz equation, it suffices to impose radiation conditions weaker than the Ikebe–Saito conditions. The self-adjointness of the magnetic Helmholtz operator is proved. The existence of a solution of the inhomogeneous Helmholtz equation satisfying the radiation condition is justified.
Keywords: Helmholtz equation, magnetic Helmholtz operator, self-adjointness, magnetic Sobolev space, magnetic Hardy inequality, diamagnetic inequality.
Mots-clés : radiation conditions
@article{MZM_2020_108_2_a1,
     author = {A. R. Aliev and Sh. Sh. Radzhabov},
     title = {Radiation {Conditions} for the {Magnetic} {Helmholtz} {Equation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {171--178},
     publisher = {mathdoc},
     volume = {108},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_2_a1/}
}
TY  - JOUR
AU  - A. R. Aliev
AU  - Sh. Sh. Radzhabov
TI  - Radiation Conditions for the Magnetic Helmholtz Equation
JO  - Matematičeskie zametki
PY  - 2020
SP  - 171
EP  - 178
VL  - 108
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_108_2_a1/
LA  - ru
ID  - MZM_2020_108_2_a1
ER  - 
%0 Journal Article
%A A. R. Aliev
%A Sh. Sh. Radzhabov
%T Radiation Conditions for the Magnetic Helmholtz Equation
%J Matematičeskie zametki
%D 2020
%P 171-178
%V 108
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_108_2_a1/
%G ru
%F MZM_2020_108_2_a1
A. R. Aliev; Sh. Sh. Radzhabov. Radiation Conditions for the Magnetic Helmholtz Equation. Matematičeskie zametki, Tome 108 (2020) no. 2, pp. 171-178. http://geodesic.mathdoc.fr/item/MZM_2020_108_2_a1/

[1] V. S. Vladimirov, Uravneniya matematicheskoi fiziki, Nauka, M., 1988 | MR | Zbl

[2] A. G. Sveshnikov, A. N. Bogolyubov, V. V. Kravtsov, Lektsii po matematicheskoi fizike, Izd-vo Mosk. un-ta, M., 1993 | MR

[3] F. Rellich, “Über das asymptotische Verhalten der Lösungen von $\Delta u+\lambda u=0$ in unendlichen Gebieten”, Jber. Deutsch. Math.-Verein., 53:1 (1943), 57–65 | MR | Zbl

[4] A. Ya. Povzner, “O razlozhenii proizvolnykh funktsii po sobstvennym funktsiyam operatora $-\Delta u+cu$”, Matem. sb., 32 (74):1 (1953), 109–156 | MR | Zbl

[5] D. M. Eidus, “O printsipe predelnogo pogloscheniya”, Matem. sb., 57 (99):1 (1962), 13–44 | MR | Zbl

[6] A. R. Aliev, E. Kh. Eivazov, “O suschestvennoi samosopryazhennosti operatora Shredingera v magnitnom pole”, TMF, 166:2 (2011), 266–271 | DOI | MR | Zbl

[7] A. R. Aliev, E. H. Eyvazov, “On the essential spectrum of electromagnetic Schrödinger operator with singular electric potential”, Complex Var. Elliptic Equ., 59:1 (2014), 18–27 | DOI | MR | Zbl

[8] K. Mochizuki, “Resolvent estimates for magnetic Schrödinger operators and their applications to related evolution equations”, Rend. Istit. Mat. Univ. Trieste, 42, Suppl. (2010), 143–164 | MR | Zbl

[9] M. Zubeldia, “Energy concentration and explicit Sommerfeld radiation condition for the electromagnetic Helmholtz equation”, J. Funct. Anal., 263:9 (2012), 2832–2862 | DOI | MR | Zbl

[10] T. Ikebe, Y. Saito, “Limiting absorption method and absolute continuity for the Schrödinger operator”, J. Math. Kyoto Univ., 12 (1972), 513–542 | DOI | MR | Zbl

[11] G. H. Hardy, “Notes on some points in the integral calculus LI”, Messenger of Math., 48 (1919), 107–112

[12] B. Opic, A. Kufner, Hardy-Type Inequalities, Pitman Res. Notes Math. Ser., 219, Longman Sci. Tech., Harlow, 1990 | MR | Zbl

[13] M. Sh. Birman, “O spektre singulyarnykh granichnykh zadach”, Matem. sb., 55 (97):2 (1961), 125–174 | MR | Zbl

[14] T. Kato, “Schrödinger operators with singular potentials”, Israel J. Math., 13:1-2 (1972), 135–148 | DOI | MR

[15] J. Avron, I. Herbst, B. Simon, “Schrödinger operators with magnetic fields. I. General interactions”, Duke Math. J., 45:4 (1978), 847–883 | DOI | MR | Zbl

[16] V. Kondratiev, M. Shubin, “Discreteness of spectrum for the magnetic Schrödinger operators”, Comm. Partial Differential Equations, 27:3-4 (2002), 477–525 | DOI | MR | Zbl

[17] B. Simon, “Schrödinger operators with singular magnetic vector potentials”, Math. Z., 131 (1973), 361–370 | DOI | MR | Zbl

[18] H. Leinfelder, C. G. Simader, “Schrödinger operators with singular magnetic vector potentials”, Math. Z., 176 (1981), 1–19 | DOI | MR | Zbl

[19] S. Mizokhata, Teoriya uravnenii s chastnymi proizvodnymi, Mir, M., 1977 | MR