Radiation Conditions for the Magnetic Helmholtz Equation
Matematičeskie zametki, Tome 108 (2020) no. 2, pp. 171-178
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that, to select a uniqueness class for the magnetic Helmholtz equation, it suffices to impose radiation conditions weaker than the Ikebe–Saito conditions. The self-adjointness of the magnetic Helmholtz operator is proved. The existence of a solution of the inhomogeneous Helmholtz equation satisfying the radiation condition is justified.
Keywords:
Helmholtz equation, magnetic Helmholtz operator, self-adjointness, magnetic Sobolev space, magnetic Hardy inequality, diamagnetic inequality.
Mots-clés : radiation conditions
Mots-clés : radiation conditions
@article{MZM_2020_108_2_a1,
author = {A. R. Aliev and Sh. Sh. Radzhabov},
title = {Radiation {Conditions} for the {Magnetic} {Helmholtz} {Equation}},
journal = {Matemati\v{c}eskie zametki},
pages = {171--178},
publisher = {mathdoc},
volume = {108},
number = {2},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_2_a1/}
}
A. R. Aliev; Sh. Sh. Radzhabov. Radiation Conditions for the Magnetic Helmholtz Equation. Matematičeskie zametki, Tome 108 (2020) no. 2, pp. 171-178. http://geodesic.mathdoc.fr/item/MZM_2020_108_2_a1/