Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2020_108_1_a8, author = {M. A. Ovcharenko}, title = {On {Hamiltonian} {Minimality} of {Isotropic} {Nonhomogeneous} {Tori} in $\mathbb{H}^n$ and $\mathbb C\mathrm P^{2n+1}$}, journal = {Matemati\v{c}eskie zametki}, pages = {119--129}, publisher = {mathdoc}, volume = {108}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_1_a8/} }
TY - JOUR AU - M. A. Ovcharenko TI - On Hamiltonian Minimality of Isotropic Nonhomogeneous Tori in $\mathbb{H}^n$ and $\mathbb C\mathrm P^{2n+1}$ JO - Matematičeskie zametki PY - 2020 SP - 119 EP - 129 VL - 108 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2020_108_1_a8/ LA - ru ID - MZM_2020_108_1_a8 ER -
M. A. Ovcharenko. On Hamiltonian Minimality of Isotropic Nonhomogeneous Tori in $\mathbb{H}^n$ and $\mathbb C\mathrm P^{2n+1}$. Matematičeskie zametki, Tome 108 (2020) no. 1, pp. 119-129. http://geodesic.mathdoc.fr/item/MZM_2020_108_1_a8/
[1] Y.-G. Oh, “Volume minimization of Lagrangian submanifolds under Hamiltonian deformations”, Math Z., 212:2 (1993), 175–192 | DOI | MR | Zbl
[2] I. Castro, F. Urbano, “Examples of unstable Hamiltonian-minimal Lagrangian tori in $\mathbb C^2$”, Compositio Math., 111:1 (1998), 1–14 | DOI | MR | Zbl
[3] F. Hélein, P. Romon, “Hamiltonian stationary Lagrangian surfaces in $\mathbb C^2$”, Comm. Anal. Geom., 10:1 (2002), 79–126 | DOI | MR | Zbl
[4] F. Hélein, P. Romon, “Weierstrass representation of Lagrangian surfaces in four-dimensional space using spinors and quaternions”, Comment. Math. Helv., 75:4 (2000), 668–680 | DOI | MR | Zbl
[5] A. E. Mironov, “O gamiltonovo-minimalnykh lagranzhevykh torakh v $\mathbb{C}P^2$”, Sib. matem. zhurn., 44:6 (2003), 1324–1328 | MR | Zbl
[6] H. Ma, “Hamiltonian Stationary Lagrangian Surfaces in $\mathbb C\mathrm P^2$”, Ann. Global Anal. Geom., 27:1 (2005), 1–16 | DOI | MR
[7] A. E. Mironov, “O novykh primerakh gamiltonovo-minimalnykh i minimalnykh lagranzhevykh podmnogoobrazii v $\mathbb C^n$ i $\mathbb C\mathrm P^n$”, Matem. sb., 195:1 (2004), 89–102 | DOI | MR | Zbl
[8] A. E. Mironov, T. E. Panov, “Peresecheniya kvadrik, moment-ugol-mnogoobraziya i gamiltonovo-minimalnye lagranzhevy vlozheniya”, Funkts. analiz i ego pril., 47:1 (2013), 47–61 | DOI | MR | Zbl
[9] R. A. Sharipov, “Minimalnye tory v pyatimernoi sfere v $\mathbb C^3$”, TMF, 87:1 (1991), 48–56 | MR | Zbl
[10] M. S. Ermentai, “O minimalnykh izotropnykh torakh v $\mathbb CP^3$”, Sib. matem. zhurn., 59:3 (2018), 529–534 | DOI
[11] M. A. Ovcharenko, “O gamiltonovo-minimalnykh izotropnykh odnorodnykh torakh v $\mathbb C^n$ i $\mathbb C\mathrm P^n$”, Sib. matem. zhurn., 59:5 (2018), 1171–1178 | DOI | Zbl
[12] M. S. Ermentai, “Ob odnom semeistve minimalnykh izotropnykh torov i butylok Kleina v $\mathbb{C}P^3$”, Sib. elektron. matem. izv., 16 (2019), 955–958 | DOI | Zbl
[13] B. Chen, J.-M. Morvan, “Deformations of isotropic submanifolds in Kähler manifolds”, J. Geom. Phys., 13:1 (1994), 79–104 | DOI | MR | Zbl
[14] H. B. Lawson, Lectures on Minimal Submanifolds, Publish or Perish, Wilmington, DE, 1980 | MR | Zbl
[15] A. Besse, Mnogoobraziya Einshteina, T. I, II, Mir, M., 1990 | MR