On Hamiltonian Minimality of Isotropic Nonhomogeneous Tori in $\mathbb{H}^n$ and $\mathbb C\mathrm P^{2n+1}$
Matematičeskie zametki, Tome 108 (2020) no. 1, pp. 119-129

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a family of flat isotropic nonhomogeneous tori in $\mathbb{H}^n$ and $\mathbb{C}\mathrm{P}^{2n+1}$ and find necessary and sufficient conditions for their Hamiltonian minimality.
Keywords: isotropic submanifold, Hamiltonian-minimal submanifold.
@article{MZM_2020_108_1_a8,
     author = {M. A. Ovcharenko},
     title = {On {Hamiltonian} {Minimality} of {Isotropic} {Nonhomogeneous} {Tori} in $\mathbb{H}^n$ and $\mathbb C\mathrm P^{2n+1}$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {119--129},
     publisher = {mathdoc},
     volume = {108},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_1_a8/}
}
TY  - JOUR
AU  - M. A. Ovcharenko
TI  - On Hamiltonian Minimality of Isotropic Nonhomogeneous Tori in $\mathbb{H}^n$ and $\mathbb C\mathrm P^{2n+1}$
JO  - Matematičeskie zametki
PY  - 2020
SP  - 119
EP  - 129
VL  - 108
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_108_1_a8/
LA  - ru
ID  - MZM_2020_108_1_a8
ER  - 
%0 Journal Article
%A M. A. Ovcharenko
%T On Hamiltonian Minimality of Isotropic Nonhomogeneous Tori in $\mathbb{H}^n$ and $\mathbb C\mathrm P^{2n+1}$
%J Matematičeskie zametki
%D 2020
%P 119-129
%V 108
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_108_1_a8/
%G ru
%F MZM_2020_108_1_a8
M. A. Ovcharenko. On Hamiltonian Minimality of Isotropic Nonhomogeneous Tori in $\mathbb{H}^n$ and $\mathbb C\mathrm P^{2n+1}$. Matematičeskie zametki, Tome 108 (2020) no. 1, pp. 119-129. http://geodesic.mathdoc.fr/item/MZM_2020_108_1_a8/