On Hamiltonian Minimality of Isotropic Nonhomogeneous Tori in $\mathbb{H}^n$ and $\mathbb C\mathrm P^{2n+1}$
Matematičeskie zametki, Tome 108 (2020) no. 1, pp. 119-129
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct a family of flat isotropic nonhomogeneous tori in $\mathbb{H}^n$ and $\mathbb{C}\mathrm{P}^{2n+1}$ and find necessary and sufficient conditions for their Hamiltonian minimality.
Keywords:
isotropic submanifold, Hamiltonian-minimal submanifold.
@article{MZM_2020_108_1_a8,
author = {M. A. Ovcharenko},
title = {On {Hamiltonian} {Minimality} of {Isotropic} {Nonhomogeneous} {Tori} in $\mathbb{H}^n$ and $\mathbb C\mathrm P^{2n+1}$},
journal = {Matemati\v{c}eskie zametki},
pages = {119--129},
publisher = {mathdoc},
volume = {108},
number = {1},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_1_a8/}
}
TY - JOUR
AU - M. A. Ovcharenko
TI - On Hamiltonian Minimality of Isotropic Nonhomogeneous Tori in $\mathbb{H}^n$ and $\mathbb C\mathrm P^{2n+1}$
JO - Matematičeskie zametki
PY - 2020
SP - 119
EP - 129
VL - 108
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/MZM_2020_108_1_a8/
LA - ru
ID - MZM_2020_108_1_a8
ER -
M. A. Ovcharenko. On Hamiltonian Minimality of Isotropic Nonhomogeneous Tori in $\mathbb{H}^n$ and $\mathbb C\mathrm P^{2n+1}$. Matematičeskie zametki, Tome 108 (2020) no. 1, pp. 119-129. http://geodesic.mathdoc.fr/item/MZM_2020_108_1_a8/