Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2020_108_1_a7, author = {An. A. Muchnik and A. L. Semenov}, title = {Lattice of {Definability} in the {Order} of {Rational} {Numbers}}, journal = {Matemati\v{c}eskie zametki}, pages = {102--118}, publisher = {mathdoc}, volume = {108}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_1_a7/} }
An. A. Muchnik; A. L. Semenov. Lattice of Definability in the Order of Rational Numbers. Matematičeskie zametki, Tome 108 (2020) no. 1, pp. 102-118. http://geodesic.mathdoc.fr/item/MZM_2020_108_1_a7/
[1] A. L. Semenov, “Presburgerovost predikatov, regulyarnykh v dvukh sistemakh schisleniya”, Sib. matem. zhurn., 18:2 (1977), 403–418 | MR | Zbl
[2] An. A. Muchnik, Vyrazimyi kriterii vyrazimosti v arifmetike Presburgera i ego primeneniya, Institut novykh tekhnologii, M., 1991; “The definable criterion for definability in Presburger arithmetic and its applications”, Theoret. Comput. Sci., 290:3 (2003), 1433–1444 | DOI | MR | Zbl
[3] A. Semenov, S. Soprunov, V. Uspensky, “The lattice of definability. Origins, recent developments, and further directions”, Computer Science – Theory and Applications, Lecture Notes in Comput. Sci., 8476, Springer, Cham, 2014, 23–38 | MR | Zbl
[4] P. J. Cameron, “Transitivity of permutation groups on unordered sets”, Math. Z., 148:2 (1976), 127–139 | DOI | MR | Zbl
[5] C. Frasnay, “Quelques problèmes combinatoires concernant les ordres totaux et les relations monomorphes”, Ann. Inst. Fourier (Grenoble), 15:2 (1965), 415–524 | DOI | MR | Zbl
[6] A. L. Semenov, S. F. Soprunov, Lattice of Relational Algebras Definable in Integers with Successor, 2012, arXiv: 1201.4439v3
[7] A. L. Semenov, Matematicheskaya logika i algebra, Tr. MIAN, 242, Nauka, MAIK «Nauka/Interperiodika», M., 2003, 103–107 | MR | Zbl
[8] E. V. Huntington, “Inter-relations among the four principal types of order”, Trans. Amer. Math. Soc., 38:1 (1935), 1–9 | DOI | MR
[9] S. A. Adeleke, P. M. Neumann, “Relations related to betweenness: their structure and automorphisms”, Mem. Amer. Math. Soc., 131, no. 623, 1998 | DOI | MR
[10] P. Erdős, G. Szekeres, “A combinatorial problem in geometry”, Compositio Math., 2 (1935), 463–470 | MR
[11] J. Leroux, “A polynomial time Presburger criterion and synthesis for number decision diagrams”, 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05), Chicago, IL, 2005, 147–156 | DOI