Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2020_108_1_a2, author = {L. Katzarkov and V. V. Przyjalkowski and A. Harder}, title = {$\mathrm P=\mathrm W$ {Phenomena}}, journal = {Matemati\v{c}eskie zametki}, pages = {33--46}, publisher = {mathdoc}, volume = {108}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_1_a2/} }
L. Katzarkov; V. V. Przyjalkowski; A. Harder. $\mathrm P=\mathrm W$ Phenomena. Matematičeskie zametki, Tome 108 (2020) no. 1, pp. 33-46. http://geodesic.mathdoc.fr/item/MZM_2020_108_1_a2/
[1] M. A. A. de Cataldo, T. Hausel, L. Migliorini, “Topology of Hitchin systems and Hodge theory of character varieties: the case $A_1$”, Ann. of Math. (2), 175:3 (2012), 1329–1407 | DOI | MR | Zbl
[2] M. A. A. de Cataldo, L. Migliorini, “The perverse filtration and the Lefschetz hyperplane theorem”, Ann. of Math. (2), 171:3 (2010), 2089–2113 | DOI | MR | Zbl
[3] M. Kontsevich, Y. Soibelman, “Affine structures and non-Archimedean analytic spaces”, The Unity of Mathematics, Progr. Math., 244, Birkhäuser Boston, Boston, MA, 2006, 321–385 | MR | Zbl
[4] M. Gross, P. Hacking, S. Keel, “Mirror symmetry for log Calabi–Yau surfaces. I”, Publ. Math. Inst. Hautes Études Sci., 122 (2015), 65–168 | DOI | MR | Zbl
[5] D. Auroux, “Special Lagrangian fibrations, mirror symmetry and Calabi–Yau double covers”, Géométrie différentielle, physique mathématique, mathématiques et société. I, Astérisque, 321, Soc. Math. France, Paris, 2008, 99–128 | MR | Zbl
[6] L. Katzarkov, M. Kontsevich, T. Pantev, “Bogomolov–Tian–Todorov theorems for Landau–Ginzburg models”, J. Differential Geom., 105:1 (2017), 155–117 | MR
[7] A. Harder, L. Katzarkov, V. Przyjalkowski, Landau–Ginzburg Models and $\mathrm P=\mathrm W$ Conjecture, Preprint, 2019
[8] D. Auroux, “Mirror symmetry and $T$-duality in the complement of an anticanonical divisor”, J. Gökova Geom. Topol. GGT, 1 (2007), 51–91 | MR | Zbl
[9] D. Auroux, “Special Lagrangian fibrations, wall-crossing, and mirror symmetry”, Geometry, Analysis, and Algebraic Geometry, Surv. Differ. Geom., 13, Int. Press, Somerville, MA, 2008, 1–47 | DOI | MR
[10] M. Abouzaid, D. Auroux, L. Katzarkov, “Lagrangian fibrations on blowups of toric varieties and mirror symmetry for hypersurfaces”, Publ. Math. Inst. Hautes Études Sci., 123 (2016), 199–282 | DOI | MR | Zbl
[11] C. Simpson, The Dual Boundary Complex of the $SL_2$ Character Variety of a Punctured Sphere, 2015, arXiv: 1504.05395
[12] A. Harder, Hodge Numbers of Landau–Ginzburg Models, 2017, arXiv: 1708.01174
[13] V. Lunts, V. Przyjalkowski, “Landau–Ginzburg Hodge numbers for mirrors of del Pezzo surfaces”, Adv. Math., 329 (2018), 189–216 | DOI | MR | Zbl
[14] D. Auroux, L. Katzarkov, D. Orlov, “Mirror symmetry for Del Pezzo surfaces: vanishing cycles and coherent sheaves”, Inv. Math., 166:3 (2012), 537–582 | DOI | MR
[15] V. V. Przhiyalkovskii, “Toricheskie modeli Landau–Ginzburga”, UMN, 73:6 (444) (2018), 95–190 | DOI | MR
[16] V. V. Przhiyalkovskii, “Kompaktifikatsii Kalabi–Yau toricheskikh modelei Landau–Ginzburga gladkikh trekhmernykh mnogoobrazii Fano”, Matem. sb., 208:7 (2017), 84–108 | DOI | MR | Zbl
[17] V. V. Przhiyalkovskii, “Slabye modeli Landau–Ginzburga gladkikh trekhmernykh mnogoobrazii Fano”, Izv. RAN. Ser. matem., 77:4 (2013), 135–160 | DOI | MR | Zbl
[18] V. Przyjalkowski, C. Shramov, “On Hodge numbers of complete intersections and Landau–Ginzburg models”, Int. Math. Res. Not. IMRN, 2015:21 (2015), 11302–11332 | DOI | MR | Zbl
[19] I. Cheltsov, V. Przyjalkowski, Kontsevich–Pantev Conjecture for Fano Threefolds, 2018, arXiv: 1809.09218
[20] Y. Shamoto, “Hodge–Tate conditions for Landau–Ginzburg models”, Publ. Res. Inst. Math. Sci., 54:3 (2018), 469–518 | DOI | MR
[21] C. Voisin, Hodge Theory and Complex Algebraic Geometry. I, Cambridge Stud. Adv. Math., 76, Cambridge Univ. Press, Cambridge, 2002 | MR | Zbl
[22] J. Carlson, S. Müller-Stach, C. Peters, Period Mappings and Period Domains, Cambridge Stud. Adv. Math., 85, Cambridge Univ. Press, Cambridge, 2003 | MR | Zbl