$\mathrm P=\mathrm W$ Phenomena
Matematičeskie zametki, Tome 108 (2020) no. 1, pp. 33-46

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we describe recent work towards the mirror $\mathrm P=\mathrm W$ conjecture, which relates the weight filtration on the cohomology of a log Calabi–Yau manifold to the perverse Leray filtration on the cohomology of the homological mirror dual log Calabi–Yau manifold taken with respect to the affinization map. This conjecture extends the classical relationship between Hodge numbers of mirror dual compact Calabi–Yau manifolds, incorporating tools and ideas which appear in the fascinating and groundbreaking works of de Cataldo, Hausel, and Migliorini [1] and de Cataldo and Migliorini [2]. We give a broad overview of the motivation for this conjecture, recent results towards it, and describe how this result might arise from the SYZ formulation of mirror symmetry. This interpretation of the mirror $\mathrm P=\mathrm W$ conjecture provides a possible bridge between the mirror $\mathrm P=\mathrm W$ conjecture and the well-known $\mathrm P=\mathrm W$ conjecture in non-Abelian Hodge theory.
Mots-clés : $\mathrm P=\mathrm W$ conjecture, perverse Leray filtration
Keywords: mixed Hodge structure, mirror symmetry.
@article{MZM_2020_108_1_a2,
     author = {L. Katzarkov and V. V. Przyjalkowski and A. Harder},
     title = {$\mathrm P=\mathrm W$ {Phenomena}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {33--46},
     publisher = {mathdoc},
     volume = {108},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_1_a2/}
}
TY  - JOUR
AU  - L. Katzarkov
AU  - V. V. Przyjalkowski
AU  - A. Harder
TI  - $\mathrm P=\mathrm W$ Phenomena
JO  - Matematičeskie zametki
PY  - 2020
SP  - 33
EP  - 46
VL  - 108
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_108_1_a2/
LA  - ru
ID  - MZM_2020_108_1_a2
ER  - 
%0 Journal Article
%A L. Katzarkov
%A V. V. Przyjalkowski
%A A. Harder
%T $\mathrm P=\mathrm W$ Phenomena
%J Matematičeskie zametki
%D 2020
%P 33-46
%V 108
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_108_1_a2/
%G ru
%F MZM_2020_108_1_a2
L. Katzarkov; V. V. Przyjalkowski; A. Harder. $\mathrm P=\mathrm W$ Phenomena. Matematičeskie zametki, Tome 108 (2020) no. 1, pp. 33-46. http://geodesic.mathdoc.fr/item/MZM_2020_108_1_a2/