Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2020_108_1_a1, author = {V. M. Buchstaber and E. Yu. Bunkova}, title = {Lie {Algebras} of {Heat} {Operators} in a {Nonholonomic} {Frame}}, journal = {Matemati\v{c}eskie zametki}, pages = {17--32}, publisher = {mathdoc}, volume = {108}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_1_a1/} }
V. M. Buchstaber; E. Yu. Bunkova. Lie Algebras of Heat Operators in a Nonholonomic Frame. Matematičeskie zametki, Tome 108 (2020) no. 1, pp. 17-32. http://geodesic.mathdoc.fr/item/MZM_2020_108_1_a1/
[1] V. M. Bukhshtaber, D. V. Leikin, “Uravneniya teploprovodnosti v negolonomnom repere”, Funkts. analiz i ego pril., 38:2 (2004), 12–27 | DOI | MR | Zbl
[2] V. M. Buchstaber, V. Z. Enolskii, D. V. Leikin, Kleinian Functions, Hyperelliptic Jacobians and Applications, Reviews in Math. and Math. Phys., 10, Gordon and Breach, London, 1997
[3] V. M. Buchstaber, V. Z. Enolskii, D. V. Leikin, “Hyperelliptic Kleinian functions and applications”, Solitons, Geometry and Topology: On the Crossroad, Amer. Math. Soc. Transl. Ser. 2, 179, Amer. Math. Soc., Providence, RI, 1997, 1–33 | MR
[4] V. M. Bukhshtaber, “Polinomialnye dinamicheskie sistemy i uravnenie Kortevega–de Friza”, Sovremennye problemy matematiki, mekhaniki i matematicheskoi fiziki. II, Tr. MIAN, 294, MAIK «Nauka/Interperiodika», M., 2016, 191–215 | DOI | MR
[5] V. I. Arnold, Osobennosti kaustik i volnovykh frontov, Fazis, M., 1996 | MR
[6] V. M. Bukhshtaber, A. V. Mikhailov, “Beskonechnomernye algebry Li, opredelyaemye prostranstvom simmetricheskikh kvadratov giperellipticheskikh krivykh”, Funkts. analiz i ego pril., 51:1 (2017), 4–27 | DOI | MR | Zbl
[7] E. Yu. Bunkova, “Differentiation of genus 3 hyperelliptic functions”, Eur. J. Math., 4:1 (2018), 93–112 ; arXiv: 1703.03947 | DOI | MR | Zbl
[8] J. C. Eilbeck, J. Gibbons, Y. Onishi, S. Yasuda, Theory of Heat Equations for Sigma Functions, 2018, arXiv: 1711.08395
[9] V. M. Bukhshtaber, D. V. Leikin, “Differentsirovanie abelevykh funktsii po parametram”, UMN, 62:4 (376) (2007), 153–154 | DOI | MR | Zbl
[10] V. M. Bukhshtaber, D. V. Leikin, “Reshenie zadachi differentsirovaniya abelevykh funktsii po parametram dlya semeistv $(n,s)$-krivykh”, Funkts. analiz i ego pril., 42:4 (2008), 24–36 | DOI | MR | Zbl
[11] V. M. Bukhshtaber, D. V. Leikin, “Polinomialnye algebry Li”, Funkts. analiz i ego pril., 36:4 (2002), 18–34 | DOI | MR | Zbl
[12] D. V. Millionschikov, “Polinomialnye algebry Li i rost ikh konechno porozhdennykh podalgebr Li”, Topologiya i fizika, Tr. MIAN, 302, MAIK «Nauka/Interperiodika», M., 2018, 316–333 | DOI | MR
[13] J. D. Cole, “On a quasi-linear parabolic equation occurring in aerodynamics”, Quart. Appl. Math., 9:3 (1951), 225–236 | DOI | MR | Zbl
[14] E. Hopf, “The partial differential equation $u_t+uu_x=u_{xx}$”, Comm. Pure Appl. Math., 3 (1950), 201–230 | DOI | MR | Zbl
[15] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov: metod obratnoi zadachi, Nauka, M., 1980 | MR
[16] L. Stickelberger, F. G. Frobenius, “Über die Differentiation der elliptischen Functionen nach den Perioden und Invarianten”, J. Reine Angew. Math., 92 (1882), 311–327 | MR
[17] V. M. Buchstaber, V. Z. Enolski, D. V. Leykin, “Multi-variable sigma-functions: old and new results”, Integrable Systems and Algebraic Geometry, Vol. 2, LMS Lecture Note Ser., Cambridge Univ. Press, Cambridge, 2019 (to appear); arXiv: 1810.11079
[18] B. A. Dubrovin, S. P. Novikov, “Periodicheskaya zadacha dlya uravnenii Kortevega–de Friza i Shturma–Liuvillya. Ikh svyaz s algebraicheskoi geometriei”, Dokl. AN SSSR, 219:3 (1974), 531–534 | MR | Zbl
[19] V. M. Buchstaber, V. Z. Enolskii, D. V. Leikin, Multi-Dimensional Sigma-Functions, 2012, arXiv: 1208.0990
[20] H. F. Baker, “On the hyperelliptic sigma functions”, Amer. J. Math., 20:4 (1898), 301–384 | DOI | MR | Zbl
[21] E. T. Whittaker, G. N. Watson, A Course of Modern Analysis, Cambridge Univ. Press, Cambridge, 1996 | MR | Zbl
[22] E. Yu. Bunkova, “On the problem of differentiation of hyperelliptic functions”, Eur. J. Math., 5:3 (2019), 712–719 ; arXiv: 1812.04245 | DOI | MR | Zbl