Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2020_108_1_a0, author = {A. T. Assanova and Zh. S. Tokmurzin}, title = {An {Approach} to the {Solution} of the {Initial} {Boundary-Value} {Problem} for {Systems} of {Fourth-Order} {Hyperbolic} {Equations}}, journal = {Matemati\v{c}eskie zametki}, pages = {3--16}, publisher = {mathdoc}, volume = {108}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_1_a0/} }
TY - JOUR AU - A. T. Assanova AU - Zh. S. Tokmurzin TI - An Approach to the Solution of the Initial Boundary-Value Problem for Systems of Fourth-Order Hyperbolic Equations JO - Matematičeskie zametki PY - 2020 SP - 3 EP - 16 VL - 108 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2020_108_1_a0/ LA - ru ID - MZM_2020_108_1_a0 ER -
%0 Journal Article %A A. T. Assanova %A Zh. S. Tokmurzin %T An Approach to the Solution of the Initial Boundary-Value Problem for Systems of Fourth-Order Hyperbolic Equations %J Matematičeskie zametki %D 2020 %P 3-16 %V 108 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2020_108_1_a0/ %G ru %F MZM_2020_108_1_a0
A. T. Assanova; Zh. S. Tokmurzin. An Approach to the Solution of the Initial Boundary-Value Problem for Systems of Fourth-Order Hyperbolic Equations. Matematičeskie zametki, Tome 108 (2020) no. 1, pp. 3-16. http://geodesic.mathdoc.fr/item/MZM_2020_108_1_a0/
[1] B. I. Ptashnik, Nekorrektnye granichnye zadachi dlya differentsialnykh uravnenii s chastnymi proizvodnymi, Naukova dumka, Kiev, 1984 | MR
[2] B. I. Ptashnik, B. C. Ilkiv, I. Ya. Kmit, V. M. Polischuk, Nelokalnye kraevye zadachi dlya uravnenii s chastnymi proizvodnymi, Naukova dumka, Kiev, 2002 (na ukrainskom yazyke)
[3] A. M. Nakhushev, Zadachi so smescheniem dlya uravnenii v chastnykh proizvodnykh, Nauka, M., 2006 | Zbl
[4] T. Kiguradze, V. Lakshmikantham, “On the Dirichlet problem for fourth order linear hyperbolic equations”, Nonlinear Anal., 49:2 (2002), 197–219 | DOI | MR | Zbl
[5] B. Midodashvili, “A nonlocal problem for fourth order hyperbolic equations with multiple characteristics”, Electr. J. Differential Equations, 2002:85 (2002), 1–7 | MR
[6] B. Midodashvili, “Generalized Goursat problem for a spatial fourth order hyperbolic equation with dominated low terms”, Proc. A. Razmadze Math. Inst., 138 (2005), 43–54 | MR | Zbl
[7] T. Kiguradze, “On solvability and well-posedness of boundary value problems for nonlinear hyperbolic equations of the fourth order”, Georgian Math. J., 15:3 (2008), 555–569 | MR | Zbl
[8] I. G. Mamedov, “Fundamentalnoe reshenie zadachi Koshi, svyazannoi s psevdoparabolicheskim uravneniem chetvertogo poryadka”, Zh. vychisl. matem. i matem. fiz., 49:1 (2009), 99–110 | MR | Zbl
[9] D. C. Ferraioli, K. Tenenblat, “Fourth order evolution equations which describe pseudospherical surfaces”, J. Differential Equations, 257:9 (2014), 3165–3199 | DOI | MR | Zbl
[10] L. S. Pulkina, F. B. Beylin, “Nonlocal approach to problems on longitudinal vibration ia a short bar”, Electr. J. Differential Equations, 2019:29 (2019), 1–9 | MR
[11] A. T. Asanova, D. S. Dzhumabaev, “Well-posedness of nonlocal boundary value problems with integral condition for the system of hyperbolic equations”, J. Math. Anal. Appl., 402:1 (2013), 167–178 | DOI | MR | Zbl
[12] A. T. Asanova, “Nelokalnaya zadacha s integralnymi usloviyami dlya sistemy giperbolicheskikh uravnenii v kharakteristicheskom pryamougolnike”, Izv. vuzov. Matem., 2017, no. 5, 11–25
[13] A. T. Assanova, “Solvability of a nonlocal problem for a hyperbolic equation with integral conditions”, Electr. J. Differential Equations, 2017:170 (2017), 1–12 | MR
[14] A. T. Asanova, “O nelokalnoi zadache s integralnymi usloviyami dlya sistemy giperbolicheskikh uravnenii”, Differents. uravneniya, 54:2 (2018), 202–214 | DOI
[15] A. T. Asanova, “O reshenii nachalno-kraevoi zadachi dlya sistemy differentsialnykh uravnenii v chastnykh proizvodnykh tretego poryadka”, Izv. vuzov. Matem., 2019, no. 4, 15–26 | DOI