An Approach to the Solution of the Initial Boundary-Value Problem for Systems of Fourth-Order Hyperbolic Equations
Matematičeskie zametki, Tome 108 (2020) no. 1, pp. 3-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

The initial boundary-value problem for systems of fourth-order partial differential equations with two independent variables is considered. By using a new unknown eigenfunction, the problem under consideration is reduced to an equivalent nonlocal problem for a system of second-order hyperbolic-type integro-differential equations with integral conditions. An algorithm for finding an approximate solution of the resulting equivalent problem is proposed, and its convergence is proved. Conditions for the existence of a unique classical solution of the initial boundary-value problem for systems of fourth-order differential equations are established in terms of the coefficients of the system and the boundary matrices.
Keywords: system of fourth-order hyperbolic equations, initial boundary-value problem, hyperbolic-type integro-differential equation, nonlocal problem, solvability.
@article{MZM_2020_108_1_a0,
     author = {A. T. Assanova and Zh. S. Tokmurzin},
     title = {An {Approach} to the {Solution} of the {Initial} {Boundary-Value} {Problem} for {Systems} of {Fourth-Order} {Hyperbolic} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {3--16},
     publisher = {mathdoc},
     volume = {108},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_108_1_a0/}
}
TY  - JOUR
AU  - A. T. Assanova
AU  - Zh. S. Tokmurzin
TI  - An Approach to the Solution of the Initial Boundary-Value Problem for Systems of Fourth-Order Hyperbolic Equations
JO  - Matematičeskie zametki
PY  - 2020
SP  - 3
EP  - 16
VL  - 108
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_108_1_a0/
LA  - ru
ID  - MZM_2020_108_1_a0
ER  - 
%0 Journal Article
%A A. T. Assanova
%A Zh. S. Tokmurzin
%T An Approach to the Solution of the Initial Boundary-Value Problem for Systems of Fourth-Order Hyperbolic Equations
%J Matematičeskie zametki
%D 2020
%P 3-16
%V 108
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_108_1_a0/
%G ru
%F MZM_2020_108_1_a0
A. T. Assanova; Zh. S. Tokmurzin. An Approach to the Solution of the Initial Boundary-Value Problem for Systems of Fourth-Order Hyperbolic Equations. Matematičeskie zametki, Tome 108 (2020) no. 1, pp. 3-16. http://geodesic.mathdoc.fr/item/MZM_2020_108_1_a0/

[1] B. I. Ptashnik, Nekorrektnye granichnye zadachi dlya differentsialnykh uravnenii s chastnymi proizvodnymi, Naukova dumka, Kiev, 1984 | MR

[2] B. I. Ptashnik, B. C. Ilkiv, I. Ya. Kmit, V. M. Polischuk, Nelokalnye kraevye zadachi dlya uravnenii s chastnymi proizvodnymi, Naukova dumka, Kiev, 2002 (na ukrainskom yazyke)

[3] A. M. Nakhushev, Zadachi so smescheniem dlya uravnenii v chastnykh proizvodnykh, Nauka, M., 2006 | Zbl

[4] T. Kiguradze, V. Lakshmikantham, “On the Dirichlet problem for fourth order linear hyperbolic equations”, Nonlinear Anal., 49:2 (2002), 197–219 | DOI | MR | Zbl

[5] B. Midodashvili, “A nonlocal problem for fourth order hyperbolic equations with multiple characteristics”, Electr. J. Differential Equations, 2002:85 (2002), 1–7 | MR

[6] B. Midodashvili, “Generalized Goursat problem for a spatial fourth order hyperbolic equation with dominated low terms”, Proc. A. Razmadze Math. Inst., 138 (2005), 43–54 | MR | Zbl

[7] T. Kiguradze, “On solvability and well-posedness of boundary value problems for nonlinear hyperbolic equations of the fourth order”, Georgian Math. J., 15:3 (2008), 555–569 | MR | Zbl

[8] I. G. Mamedov, “Fundamentalnoe reshenie zadachi Koshi, svyazannoi s psevdoparabolicheskim uravneniem chetvertogo poryadka”, Zh. vychisl. matem. i matem. fiz., 49:1 (2009), 99–110 | MR | Zbl

[9] D. C. Ferraioli, K. Tenenblat, “Fourth order evolution equations which describe pseudospherical surfaces”, J. Differential Equations, 257:9 (2014), 3165–3199 | DOI | MR | Zbl

[10] L. S. Pulkina, F. B. Beylin, “Nonlocal approach to problems on longitudinal vibration ia a short bar”, Electr. J. Differential Equations, 2019:29 (2019), 1–9 | MR

[11] A. T. Asanova, D. S. Dzhumabaev, “Well-posedness of nonlocal boundary value problems with integral condition for the system of hyperbolic equations”, J. Math. Anal. Appl., 402:1 (2013), 167–178 | DOI | MR | Zbl

[12] A. T. Asanova, “Nelokalnaya zadacha s integralnymi usloviyami dlya sistemy giperbolicheskikh uravnenii v kharakteristicheskom pryamougolnike”, Izv. vuzov. Matem., 2017, no. 5, 11–25

[13] A. T. Assanova, “Solvability of a nonlocal problem for a hyperbolic equation with integral conditions”, Electr. J. Differential Equations, 2017:170 (2017), 1–12 | MR

[14] A. T. Asanova, “O nelokalnoi zadache s integralnymi usloviyami dlya sistemy giperbolicheskikh uravnenii”, Differents. uravneniya, 54:2 (2018), 202–214 | DOI

[15] A. T. Asanova, “O reshenii nachalno-kraevoi zadachi dlya sistemy differentsialnykh uravnenii v chastnykh proizvodnykh tretego poryadka”, Izv. vuzov. Matem., 2019, no. 4, 15–26 | DOI