A Sobolev Interpolation Inequality
Matematičeskie zametki, Tome 107 (2020) no. 6, pp. 894-901

Voir la notice de l'article provenant de la source Math-Net.Ru

A sharp integral inequality is proved and used to obtain a Sobolev interpolation inequality. Further, a new proof of a Gross–Sobolev logarithmic inequality is constructed on the basis of the Sobolev interpolation inequality.
Keywords: Sobolev interpolation inequality, Hausdorff–Young inequality, Gross–Sobolev logarithmic inequality.
@article{MZM_2020_107_6_a8,
     author = {Sh. M. Nasibov},
     title = {A {Sobolev} {Interpolation} {Inequality}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {894--901},
     publisher = {mathdoc},
     volume = {107},
     number = {6},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_6_a8/}
}
TY  - JOUR
AU  - Sh. M. Nasibov
TI  - A Sobolev Interpolation Inequality
JO  - Matematičeskie zametki
PY  - 2020
SP  - 894
EP  - 901
VL  - 107
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_107_6_a8/
LA  - ru
ID  - MZM_2020_107_6_a8
ER  - 
%0 Journal Article
%A Sh. M. Nasibov
%T A Sobolev Interpolation Inequality
%J Matematičeskie zametki
%D 2020
%P 894-901
%V 107
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_107_6_a8/
%G ru
%F MZM_2020_107_6_a8
Sh. M. Nasibov. A Sobolev Interpolation Inequality. Matematičeskie zametki, Tome 107 (2020) no. 6, pp. 894-901. http://geodesic.mathdoc.fr/item/MZM_2020_107_6_a8/