A Sobolev Interpolation Inequality
Matematičeskie zametki, Tome 107 (2020) no. 6, pp. 894-901.

Voir la notice de l'article provenant de la source Math-Net.Ru

A sharp integral inequality is proved and used to obtain a Sobolev interpolation inequality. Further, a new proof of a Gross–Sobolev logarithmic inequality is constructed on the basis of the Sobolev interpolation inequality.
Keywords: Sobolev interpolation inequality, Hausdorff–Young inequality, Gross–Sobolev logarithmic inequality.
@article{MZM_2020_107_6_a8,
     author = {Sh. M. Nasibov},
     title = {A {Sobolev} {Interpolation} {Inequality}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {894--901},
     publisher = {mathdoc},
     volume = {107},
     number = {6},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_6_a8/}
}
TY  - JOUR
AU  - Sh. M. Nasibov
TI  - A Sobolev Interpolation Inequality
JO  - Matematičeskie zametki
PY  - 2020
SP  - 894
EP  - 901
VL  - 107
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_107_6_a8/
LA  - ru
ID  - MZM_2020_107_6_a8
ER  - 
%0 Journal Article
%A Sh. M. Nasibov
%T A Sobolev Interpolation Inequality
%J Matematičeskie zametki
%D 2020
%P 894-901
%V 107
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_107_6_a8/
%G ru
%F MZM_2020_107_6_a8
Sh. M. Nasibov. A Sobolev Interpolation Inequality. Matematičeskie zametki, Tome 107 (2020) no. 6, pp. 894-901. http://geodesic.mathdoc.fr/item/MZM_2020_107_6_a8/

[1] K. I. Babenko, “Ob odnom neravenstve v teorii integralov Fure”, Izv. AN SSSR. Ser. matem., 25:4 (1961), 531–542 | MR | Zbl

[2] W. Beckner, “Inequalities in Fourier analysis”, Ann. of Math. (2), 102:1 (1975), 159–182 | DOI | MR | Zbl

[3] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T. 2. Garmonicheskii analiz. Samosopryazhennost, Mir, M., 1978 | MR

[4] E. H. Lieb, M. Loss, Analysis, Grad. Stud. Math., 14, Amer. Math. Soc., Providence, RI, 2001 | MR | Zbl

[5] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, GIFML, M., 1963 | MR

[6] Sh. M. Nasibov, “Ob optimalnykh konstantakh v nekotorykh neravenstvakh Soboleva i ikh prilozhenii k nelineinomu uravneniya Shrëdingera”, Dokl. AN SSSR, 307:3 (1989), 538–542

[7] W. Beckner, M. Pearson, “On sharp Sobolev embedding and the logarithmic Sobolev inequality”, Bull. London Math. Soc., 30:1 (1998), 80–84 | DOI | MR | Zbl

[8] L. Cross, “Logarithmic Sobolev inequalities”, Amer. J. Math., 97:4 (1975), 1061–1683 | DOI | MR

[9] F. B. Weissler, “Logarithmic Sobolev inequalities for the heat-diffusion semigroup”, Tranc. Amer. Math. Soc., 237 (1978), 255–269 | DOI | MR | Zbl

[10] W. Beckner, “Geometric asymptotics and the logarithmic Sobolev inequality”, Forum Math., 11:1 (1999), 105–137 | DOI | MR | Zbl

[11] E. A. Carlen, “Superadditivity of Fisher's information and logarithmic Sobolev inequalitie”, J. Funct. Anal., 101:1 (1991), 194–211 | DOI | MR | Zbl

[12] Sh. M. Nasibov, “Ob odnom integralnom neravenstve i ego primenenii k dokazatelstvu neravenstva entropii”, Matem. zametki, 84:2 (2008), 231–237 | DOI | MR | Zbl

[13] Sh. M. Nasibov, “Ob odnom obobschenii neravenstva entropii”, Matem. zametki, 99:2 (2016), 278–282 | DOI | MR | Zbl