Estimating the Distance between Two Bodies
Matematičeskie zametki, Tome 107 (2020) no. 6, pp. 888-893.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of estimating the distance between two bodies of volume $\varepsilon$ inside an $n$-dimensional ball $U$ of unit volume as $n \to \infty$ is considered.
Keywords: minimal surface, multidimensional geometry, limit theorems.
@article{MZM_2020_107_6_a7,
     author = {F. A. Ivlev and A. Ya. Kanel},
     title = {Estimating the {Distance} between {Two} {Bodies}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {888--893},
     publisher = {mathdoc},
     volume = {107},
     number = {6},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_6_a7/}
}
TY  - JOUR
AU  - F. A. Ivlev
AU  - A. Ya. Kanel
TI  - Estimating the Distance between Two Bodies
JO  - Matematičeskie zametki
PY  - 2020
SP  - 888
EP  - 893
VL  - 107
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_107_6_a7/
LA  - ru
ID  - MZM_2020_107_6_a7
ER  - 
%0 Journal Article
%A F. A. Ivlev
%A A. Ya. Kanel
%T Estimating the Distance between Two Bodies
%J Matematičeskie zametki
%D 2020
%P 888-893
%V 107
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_107_6_a7/
%G ru
%F MZM_2020_107_6_a7
F. A. Ivlev; A. Ya. Kanel. Estimating the Distance between Two Bodies. Matematičeskie zametki, Tome 107 (2020) no. 6, pp. 888-893. http://geodesic.mathdoc.fr/item/MZM_2020_107_6_a7/

[1] A. T. Fomenko, Variational Problems in Topology. The Geometry of Legth, Area and Volume, Gordon and Breach Sci. Publ., New York, 1990 | MR

[2] Tkhi Chong Dao, A. T. Fomenko, Minimalnye poverkhnosti i problema Plato, Nauka, M., 1987 | MR