A Generalization of Schep's Theorem
Matematičeskie zametki, Tome 107 (2020) no. 6, pp. 873-887.

Voir la notice de l'article provenant de la source Math-Net.Ru

Schep proved that, for a piecewise linear function with nodes at integer points, positive definiteness on $\mathbb{R}$ is equivalent to positive definiteness on $\mathbb{Z}$. In this paper, a similar theorem for an entire function of exponential type is proved, and a generalization Schep's theorem is obtained.
Keywords: positive definite functions, Bochner–Khinchine theorem, piecewise linear functions with equidistant nodes.
Mots-clés : Fourier transform
@article{MZM_2020_107_6_a6,
     author = {V. P. Zastavnyi},
     title = {A {Generalization} of {Schep's} {Theorem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {873--887},
     publisher = {mathdoc},
     volume = {107},
     number = {6},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_6_a6/}
}
TY  - JOUR
AU  - V. P. Zastavnyi
TI  - A Generalization of Schep's Theorem
JO  - Matematičeskie zametki
PY  - 2020
SP  - 873
EP  - 887
VL  - 107
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_107_6_a6/
LA  - ru
ID  - MZM_2020_107_6_a6
ER  - 
%0 Journal Article
%A V. P. Zastavnyi
%T A Generalization of Schep's Theorem
%J Matematičeskie zametki
%D 2020
%P 873-887
%V 107
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_107_6_a6/
%G ru
%F MZM_2020_107_6_a6
V. P. Zastavnyi. A Generalization of Schep's Theorem. Matematičeskie zametki, Tome 107 (2020) no. 6, pp. 873-887. http://geodesic.mathdoc.fr/item/MZM_2020_107_6_a6/

[1] A. S. Belov, “O polozhitelno opredelennykh lomanykh funktsiyakh i ikh primeneniyakh”, Ortogonalnye ryady, teoriya priblizhenii i smezhnye voprosy, Tr. MIAN, 280, MAIK «Nauka/Interperiodika», M., 2013, 11–40 | DOI | MR

[2] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. II, John Wiley Sons, New York, 1966 | MR | Zbl

[3] Z. Sasvári, Positive Definite and Definitizable Functions, Akademie Verlag, Berlin, 1994 | MR | Zbl

[4] T. M. Bisgaard, Z. Sasvári, Characteristic Functions and Moment Sequences. Positive Definiteness in Probability, Nova Sci. Publ., Huntington, NY, 2000 | MR | Zbl

[5] R. R. Goldberg, “Restrictions of Fourier transforms and extension of Fourier sequences”, J. Approximation Theory, 3:2 (1970), 149–155 | DOI | MR | Zbl

[6] B. Ya. Levin, Lectures on Entire Functions, Transl. Math. Monogr., 150, Amer. Math. Soc., Providence, RI, 1996 | DOI | MR | Zbl

[7] R. P. Boas, Jr., Entire Functions, Academic Press, New York, 1954 | MR | Zbl

[8] C. C. Graham, O. C. McGhee, Essays in Commutative Harmonic Analysis, Springer-Verlag, Berlin, 1979 | MR | Zbl

[9] V. I. Bogachev, Osnovy teorii mery, T. 2, NITs Regulyarnaya i khaotichnaya dinamika, M.–Izhevsk, 2003

[10] M. G. Krein, “O predstavlenni funktsii integralami Fure–Stiltesa”, Uch. zap. Kuibyshevskogo ped. i uchit. in-ta, 1943, no. 7, 123–148; М. Г. Крейн, Избранные труды, Т. 1, Киев, 1993, 16–48

[11] Z. Sasvari, Multivariate Characteristic and Correlation Functions, Walter de Gruyter, Berlin, 2013 | MR

[12] N. I. Akhiezer, Lektsii ob integralnykh preobrazovaniyakh, Vischa shkola, Kharkov, 1984 | MR

[13] N. N. Vakhaniya, V. I. Tarieladze, S. A. Chobanyan, Veroyatnostnye raspredeleniya v banakhovykh prostranstvakh, Nauka, M., 1985 | MR

[14] R. M. Trigub, E. S. Belinsky, Fourier Analysis and Approximation of Functions, Kluwer, Boston, MA, 2004 | MR | Zbl

[15] I. Stein, G. Veis, Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | Zbl

[16] V. P. Gurarii, “Gruppovye metody kommutativnogo garmonicheskogo analiza”, Kommutativnyi garmonicheskii analiz – 2, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 25, VINITI, M., 1988, 4–303 | MR | Zbl

[17] E. Khyuitt, K. Ross, Abstraktnyi garmonicheskii analiz. T. 2. Struktura i analiz kompaktnykh grupp. Analiz na lokalno kompaktnykh abelevykh gruppakh, Mir, M., 1975 | MR | Zbl

[18] M. G. Krein, “Ob izmerimykh ermitovo-polozhitelnykh funktsiyakh”, Matem. zametki, 23:1 (1978), 79–91 | MR | Zbl

[19] M. M. Crum, “On positive-definite function”, Proc. London Math. Soc. (3), 6:4 (1956), 548–560 | DOI | MR | Zbl

[20] V. P. Zastavnyi, “A theorem on zeros of an entire function and its applications”, Methods Funct. Anal. Topology, 10:2 (2004), 91–104 | MR | Zbl

[21] V. P. Zastavnyi, Polozhitelno opredelennye funktsii, zavisyaschie ot normy. Reshenie problemy Shenberga, Preprint, Institut prikl. matem. i mekh. AN Ukrainy, Donetsk, 1991

[22] V. P. Zastavnyi, “Polozhitelno opredelennye funktsii, zavisyaschie ot normy”, Dokl. AN, 325:5 (1992), 901–903 | MR

[23] V. P. Zastavnyi, “Positive definite functions depending on the norm”, Russ. J. Math. Phys., 1:4 (1993), 511–522 | MR | Zbl

[24] V. P. Zastavnyi, “On positive definiteness of some functions”, J. Multivariate Anal., 73 (2000), 55–81 | DOI | MR | Zbl

[25] B. I. Golubov, “On Abel-Poisson type and Riesz means”, Anal. Math., 7:3 (1981), 161–184 | DOI | MR | Zbl

[26] G. Khardi, Raskhodyaschiesya ryady, IL, M., 1951 | MR

[27] V. P. Zastavnyi, A. D. Manov, “O polozhitelnoi opredelennosti nekotorykh funktsii, svyazannykh s problemoi Shenberga”, Matem. zametki, 102:3 (2017), 355–368 | DOI | MR | Zbl