A Generalization of Schep's Theorem
Matematičeskie zametki, Tome 107 (2020) no. 6, pp. 873-887

Voir la notice de l'article provenant de la source Math-Net.Ru

Schep proved that, for a piecewise linear function with nodes at integer points, positive definiteness on $\mathbb{R}$ is equivalent to positive definiteness on $\mathbb{Z}$. In this paper, a similar theorem for an entire function of exponential type is proved, and a generalization Schep's theorem is obtained.
Keywords: positive definite functions, Bochner–Khinchine theorem, piecewise linear functions with equidistant nodes.
Mots-clés : Fourier transform
@article{MZM_2020_107_6_a6,
     author = {V. P. Zastavnyi},
     title = {A {Generalization} of {Schep's} {Theorem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {873--887},
     publisher = {mathdoc},
     volume = {107},
     number = {6},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_6_a6/}
}
TY  - JOUR
AU  - V. P. Zastavnyi
TI  - A Generalization of Schep's Theorem
JO  - Matematičeskie zametki
PY  - 2020
SP  - 873
EP  - 887
VL  - 107
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_107_6_a6/
LA  - ru
ID  - MZM_2020_107_6_a6
ER  - 
%0 Journal Article
%A V. P. Zastavnyi
%T A Generalization of Schep's Theorem
%J Matematičeskie zametki
%D 2020
%P 873-887
%V 107
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_107_6_a6/
%G ru
%F MZM_2020_107_6_a6
V. P. Zastavnyi. A Generalization of Schep's Theorem. Matematičeskie zametki, Tome 107 (2020) no. 6, pp. 873-887. http://geodesic.mathdoc.fr/item/MZM_2020_107_6_a6/