Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2020_107_6_a5, author = {V. N. Dubinin}, title = {The {Schwarzian} {Derivative} of a}, journal = {Matemati\v{c}eskie zametki}, pages = {865--872}, publisher = {mathdoc}, volume = {107}, number = {6}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_6_a5/} }
V. N. Dubinin. The Schwarzian Derivative of a. Matematičeskie zametki, Tome 107 (2020) no. 6, pp. 865-872. http://geodesic.mathdoc.fr/item/MZM_2020_107_6_a5/
[1] Z. Nehari, Conformal Mapping, Dover Publ., New York, 1975 | MR
[2] O. Lehto, Univalent Fnctions and Teichmüller Spaces, Grad. Texts in Math., 109, Springer, New York, 1987 | MR
[3] B. Osgood, “Old and new on the Schwarzian derivative”, Quasiconformal Mappings and Analysis, Springer, New York, 1998, 275–308 | MR | Zbl
[4] M. Chuaqui, P. Duren, W. Ma, D. Me\'jia, D. Minda, B. Osgood, “Schwarzian norms and two-point distortion”, Pacific J. Math., 254:1 (2011), 101–116 | DOI | MR | Zbl
[5] V. N. Dubinin, “Geometricheskie otsenki proizvodnoi Shvartsa”, UMN, 72:3 (435) (2017), 97–130 | DOI | MR | Zbl
[6] V. Bolotnikov, “Several inequalities for the Schwarzian derivative of a bounded analytic function”, Complex Var. Elliptic Equ., 64:7 (2019), 1093–1102 | DOI | MR | Zbl
[7] Z. Nehari, “The Schwarzian derivative and schlicht functions”, Bull. Amer. Math. Soc., 55 (1949), 545–551 | DOI | MR | Zbl
[8] V. N. Dubinin, Condenser Capacities and Symmetrization in Geometric Function Theory, Springer, Basel, 2014 | MR | Zbl
[9] M. Shiffer, “Nekotorye novye rezultaty v teorii konformnykh otobrazhenii”: R. Kurant, Prilozhenie, M., IL, 1953, 234–301
[10] V. Singh, Grunsky Inequalities and Coefficients of Bounded Schlicht Functions, Ann. Acad. Sci. Fenn. Ser. A I, 310, Suomalainen tiedeakatemia, Helsinki, 1962 | MR
[11] Yu. E. Alenitsyn, “Ob odnolistnykh funktsiyakh bez obschikh znachenii v mnogosvyaznoi oblasti”, Ekstremalnye zadachi geometricheskoi teorii funktsii, Tr. MIAN SSSR, 94, Nauka. Leningradskoe otdelenie, Leningrad, 1968, 4–18 | MR | Zbl
[12] V. N. Dubinin, “Printsip mazhoratsii dlya $p$-listnykh funktsii”, Matem. zametki, 65:4 (1999), 533–541 | DOI | MR | Zbl