Relaxation Oscillations in a Logistic Equation
Matematičeskie zametki, Tome 107 (2020) no. 6, pp. 833-847.

Voir la notice de l'article provenant de la source Math-Net.Ru

A logistic equation with state- and parameter-dependent delay is considered. The existence of a nonlocal relaxation periodic solution of this equation is proved for sufficiently large parameter values. The proof is carried out by using the large parameter method. For large parameter values, asymptotic estimates of the main characteristics of this solution are also constructed.
Keywords: delay equation, large parameter method.
Mots-clés : relaxation solution
@article{MZM_2020_107_6_a2,
     author = {V. O. Golubenets},
     title = {Relaxation {Oscillations} in a {Logistic} {Equation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {833--847},
     publisher = {mathdoc},
     volume = {107},
     number = {6},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_6_a2/}
}
TY  - JOUR
AU  - V. O. Golubenets
TI  - Relaxation Oscillations in a Logistic Equation
JO  - Matematičeskie zametki
PY  - 2020
SP  - 833
EP  - 847
VL  - 107
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_107_6_a2/
LA  - ru
ID  - MZM_2020_107_6_a2
ER  - 
%0 Journal Article
%A V. O. Golubenets
%T Relaxation Oscillations in a Logistic Equation
%J Matematičeskie zametki
%D 2020
%P 833-847
%V 107
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_107_6_a2/
%G ru
%F MZM_2020_107_6_a2
V. O. Golubenets. Relaxation Oscillations in a Logistic Equation. Matematičeskie zametki, Tome 107 (2020) no. 6, pp. 833-847. http://geodesic.mathdoc.fr/item/MZM_2020_107_6_a2/

[1] M. C. Mackey, “Commodity price fluctuations: price dependent delays and nonlinearities as explanatory factors”, J. Econom. Theory, 48 (1989), 497–509 | DOI | MR | Zbl

[2] R. S. Valentain, “Ekonomichnost, ustoichivost i rabotosposobnost ZhRD”, Voprosy raketnoi tekhniki, 1973, no. 1, 29–59

[3] Yu. S. Kolesov, D. I. Shvitra, “Matematicheskoe modelirovanie protsessa goreniya v kamere zhidkostnogo raketnogo dvigatelya”, Litovskii matem. sbornik, 15:4 (1975) | MR

[4] T. Insperger, A. W. Barton, G. Stepan, “Criticality of Hopf bifurcation in state-dependent delay model of turning processes”, Int. J. Non-Linear Mech., 43:2 (2008), 140–149 | DOI | Zbl

[5] M. G. Zager, P. M. Schlosser, H. T. Tran, “A delayed nonlinear PBPK model for genistein dosimetry in rats”, Bull. Math. Biol., 69:1 (2007), 93–117 | DOI | MR | Zbl

[6] Jack K. Hale, Theory of Functional Differential Equations, Springer-Verlag, 1977 | MR | Zbl

[7] Q. Hu, J. Wu, “Global Hopf bifurcation for differential equations with state-dependent delay”, J. Differential Equations, 248:12 (2010), 2801–2840 | DOI | MR | Zbl

[8] M. Brokate, F. Colonius, “Linearizing equations with state-dependent delays”, Appl. Math. Optim., 21 (1990), 45–52 | DOI | MR | Zbl

[9] K. L. Cooke, W. Z. Huang, “On the problem of linearization for state-dependent delay differential equations”, Proc. Amer. Math. Soc., 124:5 (1996), 1417–1426 | DOI | MR | Zbl

[10] F. Hartung, J. Turi, “On differentiability of solutions with respect to parameters in state-dependent delay equations”, J. Differential Equations, 135:2 (1997), 192–237 | DOI | MR | Zbl

[11] I. S. Kaschenko, S. A. Kaschenko, “Lokalnaya dinamika uravneniya s bolshim zapazdyvaniem, zavisyaschim ot iskomoi funktsii”, Dokl. AN, 464:5 (2015), 521–524 | DOI

[12] Y. Kuang, H. L. Smith, “Slowly oscillating periodic solutions of autonomous state-dependent delay equations”, Nonlinear Anal., 19:9 (1992), 855–872 | DOI | MR | Zbl

[13] M. C. Mackey, J. Belair, “Consumer memory and price fluctuations in commodity markets: an integrodifferential model”, J. Dynam. Differential Equations, 1:3 (1989), 299–325 | DOI | MR | Zbl

[14] V. O. Golubenets, “Analiz lokalnykh bifurkatsii dlya uravneniya s zapazdyvaniem, zavisyaschim ot iskomoi funktsii”, Model. i analiz inform. sistem, 22:5 (2015), 711–722 | DOI | MR

[15] J. Mallet-Paret, R. D. Nussbaum, P. Paraskevopoulos, “Periodic solutions for functional differential equations with multiple state-dependent time lags”, Topol. Methods Nonlinear Anal., 3 (1994), 101–162 | DOI | MR | Zbl

[16] S. A. Kaschenko, “Asimptotika reshenii obobschennogo uravneniya Khatchinsona”, Model. i analiz inform. sistem, 19:3 (2012), 32–61

[17] S. A. Kaschenko, “Asimptotika periodicheskogo resheniya obobschennogo uravneniya Khatchinsona”, Issledovaniya po ustoichivosti i teorii kolebanii, YarGU, Yaroslavl, 1981, 64–85

[18] R. Edvars, Funktsionalnyi analiz. Teoriya i prilozheniya, Mir, M., 1969 | MR