Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2020_107_6_a2, author = {V. O. Golubenets}, title = {Relaxation {Oscillations} in a {Logistic} {Equation}}, journal = {Matemati\v{c}eskie zametki}, pages = {833--847}, publisher = {mathdoc}, volume = {107}, number = {6}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_6_a2/} }
V. O. Golubenets. Relaxation Oscillations in a Logistic Equation. Matematičeskie zametki, Tome 107 (2020) no. 6, pp. 833-847. http://geodesic.mathdoc.fr/item/MZM_2020_107_6_a2/
[1] M. C. Mackey, “Commodity price fluctuations: price dependent delays and nonlinearities as explanatory factors”, J. Econom. Theory, 48 (1989), 497–509 | DOI | MR | Zbl
[2] R. S. Valentain, “Ekonomichnost, ustoichivost i rabotosposobnost ZhRD”, Voprosy raketnoi tekhniki, 1973, no. 1, 29–59
[3] Yu. S. Kolesov, D. I. Shvitra, “Matematicheskoe modelirovanie protsessa goreniya v kamere zhidkostnogo raketnogo dvigatelya”, Litovskii matem. sbornik, 15:4 (1975) | MR
[4] T. Insperger, A. W. Barton, G. Stepan, “Criticality of Hopf bifurcation in state-dependent delay model of turning processes”, Int. J. Non-Linear Mech., 43:2 (2008), 140–149 | DOI | Zbl
[5] M. G. Zager, P. M. Schlosser, H. T. Tran, “A delayed nonlinear PBPK model for genistein dosimetry in rats”, Bull. Math. Biol., 69:1 (2007), 93–117 | DOI | MR | Zbl
[6] Jack K. Hale, Theory of Functional Differential Equations, Springer-Verlag, 1977 | MR | Zbl
[7] Q. Hu, J. Wu, “Global Hopf bifurcation for differential equations with state-dependent delay”, J. Differential Equations, 248:12 (2010), 2801–2840 | DOI | MR | Zbl
[8] M. Brokate, F. Colonius, “Linearizing equations with state-dependent delays”, Appl. Math. Optim., 21 (1990), 45–52 | DOI | MR | Zbl
[9] K. L. Cooke, W. Z. Huang, “On the problem of linearization for state-dependent delay differential equations”, Proc. Amer. Math. Soc., 124:5 (1996), 1417–1426 | DOI | MR | Zbl
[10] F. Hartung, J. Turi, “On differentiability of solutions with respect to parameters in state-dependent delay equations”, J. Differential Equations, 135:2 (1997), 192–237 | DOI | MR | Zbl
[11] I. S. Kaschenko, S. A. Kaschenko, “Lokalnaya dinamika uravneniya s bolshim zapazdyvaniem, zavisyaschim ot iskomoi funktsii”, Dokl. AN, 464:5 (2015), 521–524 | DOI
[12] Y. Kuang, H. L. Smith, “Slowly oscillating periodic solutions of autonomous state-dependent delay equations”, Nonlinear Anal., 19:9 (1992), 855–872 | DOI | MR | Zbl
[13] M. C. Mackey, J. Belair, “Consumer memory and price fluctuations in commodity markets: an integrodifferential model”, J. Dynam. Differential Equations, 1:3 (1989), 299–325 | DOI | MR | Zbl
[14] V. O. Golubenets, “Analiz lokalnykh bifurkatsii dlya uravneniya s zapazdyvaniem, zavisyaschim ot iskomoi funktsii”, Model. i analiz inform. sistem, 22:5 (2015), 711–722 | DOI | MR
[15] J. Mallet-Paret, R. D. Nussbaum, P. Paraskevopoulos, “Periodic solutions for functional differential equations with multiple state-dependent time lags”, Topol. Methods Nonlinear Anal., 3 (1994), 101–162 | DOI | MR | Zbl
[16] S. A. Kaschenko, “Asimptotika reshenii obobschennogo uravneniya Khatchinsona”, Model. i analiz inform. sistem, 19:3 (2012), 32–61
[17] S. A. Kaschenko, “Asimptotika periodicheskogo resheniya obobschennogo uravneniya Khatchinsona”, Issledovaniya po ustoichivosti i teorii kolebanii, YarGU, Yaroslavl, 1981, 64–85
[18] R. Edvars, Funktsionalnyi analiz. Teoriya i prilozheniya, Mir, M., 1969 | MR