@article{MZM_2020_107_6_a13,
author = {A. N. Prikhod'ko},
title = {The {Equivariant} {Hirzebruch{\textendash}Riemann{\textendash}Roch} {Theorem}},
journal = {Matemati\v{c}eskie zametki},
pages = {940--944},
year = {2020},
volume = {107},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_6_a13/}
}
A. N. Prikhod'ko. The Equivariant Hirzebruch–Riemann–Roch Theorem. Matematičeskie zametki, Tome 107 (2020) no. 6, pp. 940-944. http://geodesic.mathdoc.fr/item/MZM_2020_107_6_a13/
[1] G. Kondyrev, A. Prikhodko, Equivariant Grothendieck–Riemann–Roch Theorem Via Formal Deformation Theory, 2019, arXiv: 1906.00172
[2] P. Donovan, Bull. Soc. Math. France, 97 (1969), 257–273 | DOI | MR | Zbl
[3] N. Markarian, J. London Math. Soc. (2), 79:1 (2008), 129–143 | DOI | MR
[4] G. Kondyrev, A. Prikhodko, J. Inst. Math. Jussieu, 2018 | DOI
[5] D. Gaitsgory, N. Rozenblyum, A Study in Derived Algebraic Geometry Vol. I. Correspondences and Duality, Amer. Math. Soc., Providence, RI, 2017 | MR
[6] D. Gaitsgory, N. Rozenblyum, A Study in Derived Algebraic Geometry Vol. I. Deformations, Lie Theory and Formal Geometry, Amer. Math. Soc., Providence, RI, 2017 | MR
[7] B. Hennion, J. Reine Angew. Math., 741 (2018), 1–45 | DOI | MR | Zbl
[8] D. Arinkin, A. Caldararu, M. Hablicsek, Formality of Derived Intersections and the Orbifold HKR Isomorphism, 2014, arXiv: 1412.5233