The Equivariant Hirzebruch--Riemann--Roch Theorem
Matematičeskie zametki, Tome 107 (2020) no. 6, pp. 940-944.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: traces in $2$-categories, fixed point formulas, derived loop spaces.
@article{MZM_2020_107_6_a13,
     author = {A. N. Prikhod'ko},
     title = {The {Equivariant} {Hirzebruch--Riemann--Roch} {Theorem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {940--944},
     publisher = {mathdoc},
     volume = {107},
     number = {6},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2020_107_6_a13/}
}
TY  - JOUR
AU  - A. N. Prikhod'ko
TI  - The Equivariant Hirzebruch--Riemann--Roch Theorem
JO  - Matematičeskie zametki
PY  - 2020
SP  - 940
EP  - 944
VL  - 107
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2020_107_6_a13/
LA  - ru
ID  - MZM_2020_107_6_a13
ER  - 
%0 Journal Article
%A A. N. Prikhod'ko
%T The Equivariant Hirzebruch--Riemann--Roch Theorem
%J Matematičeskie zametki
%D 2020
%P 940-944
%V 107
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2020_107_6_a13/
%G ru
%F MZM_2020_107_6_a13
A. N. Prikhod'ko. The Equivariant Hirzebruch--Riemann--Roch Theorem. Matematičeskie zametki, Tome 107 (2020) no. 6, pp. 940-944. http://geodesic.mathdoc.fr/item/MZM_2020_107_6_a13/

[1] G. Kondyrev, A. Prikhodko, Equivariant Grothendieck–Riemann–Roch Theorem Via Formal Deformation Theory, 2019, arXiv: 1906.00172

[2] P. Donovan, Bull. Soc. Math. France, 97 (1969), 257–273 | DOI | MR | Zbl

[3] N. Markarian, J. London Math. Soc. (2), 79:1 (2008), 129–143 | DOI | MR

[4] G. Kondyrev, A. Prikhodko, J. Inst. Math. Jussieu, 2018 | DOI

[5] D. Gaitsgory, N. Rozenblyum, A Study in Derived Algebraic Geometry Vol. I. Correspondences and Duality, Amer. Math. Soc., Providence, RI, 2017 | MR

[6] D. Gaitsgory, N. Rozenblyum, A Study in Derived Algebraic Geometry Vol. I. Deformations, Lie Theory and Formal Geometry, Amer. Math. Soc., Providence, RI, 2017 | MR

[7] B. Hennion, J. Reine Angew. Math., 741 (2018), 1–45 | DOI | MR | Zbl

[8] D. Arinkin, A. Caldararu, M. Hablicsek, Formality of Derived Intersections and the Orbifold HKR Isomorphism, 2014, arXiv: 1412.5233